
Bachelor Thesis

Building Compiled Language Extensions

for JavaScript

Author

Jonathan Immanuel Brachthäuser

Examiners

Prof. Walter Kriha

Prof. Dr. Ansgar Gerlicher

Andreas Stiegler, M. Sc.

Stuttgart Media University (HdM) — February 27, 2012

Integrity Statement

Herein I declare that this Bachelor Thesis was created entirely by myself. I only used

the sources specifically stated in this document. Thoughts used, either by meaning or

quoted, were marked as such.

Stuttgart, February 27, 2012 Jonathan Immanuel Brachthäuser

iii

Acknowledgements

This thesis would be impossible without the support of some great people.

Marlen, I love you. Thank you for trying to understand what I am doing and especially

for learning Lisp! Thank you, beloved family, for always supporting me unconditionally.

Many thanks to Stephan Soller, Andreas Stiegler and Patrick Bader for all those intense

and vivid discussions that helped my stay on track. I have truly learned a lot from you

guys, even in times I did not want to. Patrick pointed my nose at OMeta which has been

a great inspiration for this thesis. By the way, AST guessing is an awesome game to play.

Alessandro Warth did a great work with his language OMeta. Thank you, it is so much

fun to work with.

Even if writing a thesis can be rough some time it is less of a burden when working in a

comforting environment. Thank you Prof. Zimmermann for your trust and for tilting at

the windmills of bureaucracy.

I also have to thank Claus Gittinger for showing me that building Interpreters (and

compilers in extension) is no voodoo.

Last but not least I want to thank Prof. Walter Kriha and Prof. Dr. Ansgar Gerlicher for

giving me the chance and freedom to do research on such an amazing topic.

v

Abstract

The web is moving in an enormous speed. New standards like HTML5, CSS3 and the

6th edition of the ECMAScript are under development. Browser vendors have improved

the performance of their JavaScript engines a lot which now serve as Petri dishes for

the development of new languages and JavaScript derivatives. The term “transpiler”

has been coined to subsume the cross-compilation from one edition of ECMAScript to

another.

Set in this volatile environment, the goal of this thesis is to provide a foundation to

compose individual extensions. Thus, a custom language derivative can be built which

fits the individual likings. It is not scope of this thesis to design such a language but to

provide a framework supporting the creation of JavaScript language extensions.

This thesis targets at intermediate JavaScript developers who are interested in creating

their own language. No expert knowledge in building compilers is required. The thesis is

designed as a guide and hence necessary theoretical knowledge of compilers and parser

generators is briefly discussed in the first few chapters.

OMeta/JS is chosen as parser generator in oder to experiment with language extensions

in the most flexible and convenient way. Both a JavaScript parser and a translator are

implemented in a way that allows an easy extension. JsonML is chosen to internally

represent the abstract syntax tree. The creation of the tree is accomplished by the

means of node-constructors. A generic walker grammar is provided in order to easily

traverse the syntax tree.

The design of the framework aims at the reuse of the single components. Hence, the

re-factored implementation of OMeta/JS can be used as a standalone package for Node.js.

The interdependencies between the different modules are clearly separated to allow

reasonable maintainability.

A fictional language EJS is introduced to demonstrate the possibilities of the framework

at hand. For this purpose four example extensions are discussed, each with increasing

complexity. The last extension finally introduces a class based object orientation.

Many improvements of the framework are imaginable. Yet, the architecture renders

itself to be a good foundation to quickly develop JavaScript language extensions.

vii

Contents

Page

1 Introduction 1

1.1 JavaScript . 2

1.1.1 Outside of the Browser . 2

1.1.2 JavaScript as a Standard . 3

1.1.3 Problems and Solutions . 4

1.1.4 Compiled Language Extensions . 5

1.2 Scope of this Thesis . 6

2 The Compilation Process 9

2.1 Lexical Analysis . 10

2.2 Syntactical Analysis . 11

2.3 Tree Transformations . 12

2.4 Code Generation . 13

2.5 Summary . 13

3 A little more about Parsers 15

3.1 Recursive Decent Parsers . 16

3.2 Extending Recursive Decent Parsers . 19

3.2.1 Backtracking . 19

3.2.2 Memoization . 20

3.2.3 Left Recursion . 21

3.2.4 Parsing Expression Grammars . 22

3.2.5 Semantic Predicates . 23

3.3 Summary . 23

ix

CONTENTS

4 Existing Parser Generators 25

4.1 Comparison of PEG-Parser Generators . 26

4.1.1 Concepts . 27

4.1.2 Documentation . 27

4.1.3 Error Reporting . 28

4.1.4 Extensibility . 28

4.1.5 Conclusion . 29

5 OMeta 31

5.1 Writing Grammars . 33

5.1.1 Differences to PEG . 33

5.1.2 Pattern Matching . 34

5.1.3 Semantic Predicates . 35

5.1.4 Semantic Actions . 36

5.1.5 Parametrized Rules . 38

5.1.6 Higher-Order Rules . 39

5.1.7 It’s all about Context: OMeta or JavaScript? 40

5.1.8 Grammar Inheritance . 41

5.1.9 Foreign Rule Invocation . 42

5.2 Using OMeta/JS . 43

5.2.1 Usage of OMeta Grammar Objects 44

5.2.2 Stateful Pattern Matching . 45

5.3 Summary . 46

6 Extending JavaScript 47

6.1 Five Steps to Create a Language Extension 48

6.1.1 First Step: Set up the Environment 49

6.1.2 Second Step: Write an ES5 Grammar 51

6.1.3 Third Step: Specify the Format of the AST 53

6.1.4 Fourth Step: Traverse the AST and Generate Code 56

6.1.5 Fifth Step: Start Extending . 61

6.2 The Architecture . 64

6.2.1 The OMeta Package . 65

6.2.2 The JsonML Package . 66

6.2.3 The ES5 Package . 67

6.2.4 The EJS Package . 70

6.3 The Grammars . 72

6.4 Summary . 74

x

CONTENTS

7 Usecase: Example Extension 75

7.1 Scope Forcing with !{} . 76

7.1.1 Introducing a new Syntax . 78

7.1.2 Implementing the Syntax . 79

7.2 The Substitution Operator “#{}“ . 80

7.2.1 Introducing a new Syntax . 81

7.2.2 Implementing the Syntax . 81

7.3 Lambda Expressions {||} . 82

7.3.1 Introducing a new Syntax . 83

7.3.2 Implementing the Syntax . 85

7.4 Classes and Object Orientation . 86

7.4.1 Introducing a new Syntax . 88

7.4.2 Implementing the Syntax . 90

7.5 Summary . 93

8 Conclusions 95

8.1 Related Work . 95

8.2 Future Work . 96

A Code Samples 99

A.1 PEG-Grammars . 100

A.2 Visitor Based Implementation . 102

A.3 Recursive Descent Lisp Parser . 103

A.4 Implementation of Implicit Returns . 104

B OMeta/JS 105

B.1 OMeta/JS - Required Files for Compilation 106

B.2 OMeta Base Grammar . 107

B.3 Object Pattern Matching in OMeta/JS . 108

Bibliography 110

List of Figures 118

List of Tables 119

Abbreviations 119

xi

Chapter 1

Introduction

Contents

1.1 JavaScript . 2

1.1.1 Outside of the Browser . 2

1.1.2 JavaScript as a Standard . 3

1.1.3 Problems and Solutions . 4

1.1.4 Compiled Language Extensions 5

1.2 Scope of this Thesis . 6

For almost every developer there are times, when the question arises: “Why, tell me why,

can’t I simply do it like in x?”

In this saying, x can be replaced by any programming language that might have one

additional feature to that language one is currently working with. This absent feature

can be a complex one, unique to the language. However, these features often are of

syntactical nature - in other words: just the way to express the things we want to happen.

With every new programming language we have learned, we also possibly gain more

frustration because there is no programming language that can fit all shoes. So most of

the time we will be missing certain capabilities or ways to express our algorithms in a

delightful manner.

There are languages that make us feel more locked-in than others do. On the other

hand, some existing languages are full of beautiful features, waiting to be discovered1.

Additionally there is a third category of languages, providing us with all the necessary

tools to change the language itself where it doesn’t fit our needs. A good example for

this group is Lisp, where every programmer can create his own set of tools and redefine

almost anything, according to his personal likings.

Nevertheless, thsese shortcomings usually exist for a purpose. Sometimes “prosaic

elegance” has been traded off against performance, security motives or internal consis-

tency. So there are many good reasons that underly possible answers to the introductory

question. Likely none of them will really comfort us in that kind of situation. We just have

to keep in mind that languages are not born out of a singularity, somewhere in vacuo.

Instead, languages are settled in a given environment as children of hard requirements

1According to my personal experiences, Ruby is a good example for this languages

1

CHAPTER 1. INTRODUCTION

that have a large impact on design decisions. Occasionally, mostly due to improvements

of the underlying hardware, some of these requirements become obsolete with time

passing, but others still apply.

1.1 JavaScript

JavaScript has been developed as language within the browser. With the magnificent

gain of importance the Internet has received in the last decade, JavaScript has become

one of the world’s most used programming languages. It is used both by amateur

web-developers with little programming-knowledge and professionals. The initial scope

was to be a client-side scripting-language in order to allow interactivity on a webpage,

after it has been downloaded by the client’s browser. The bad reputation of being slow

and insecure JavaScript has carried away from the early days is now covered with the

success of buzzwords like Web 2.0 and AJAX. Meanwhile, many browser vendors did

an outstanding work under the hood and significantly improved the performance and

security of their JavaScript-interpreters. Currently, almost each and every site in the web

is using JavaScript to add more or less comprehensive interactivity and visual effects.

Dozens of large productivity web-applications like e-mail clients, image-editing and

complete office-solutions emerge, built from tip to toe solely on JavaScript. Today, the

only web technology providing client-side scripting which had a similar impact is Flash.

But the web is moving fast - the upcoming HTML5 standard, in combination with some

JavaScript APIs, is on the way to replace Flash as prominent tool for complex animations

and the embedding of videos.

1.1.1 Outside of the Browser

However, the browser isn’t the only environment of JavaScript anymore. The language

is used for scripting purpose by many desktop applications. Gnome Shell, part of the

window-manager of the Gnome 3 Desktop2, makes intense use of JavaScript for window-

positioning and compositing. The graphical user interface of Mozilla Thunderbird3, an

open source mail-client, is completely written in JavaScript and XUL. In consequence of

the large diversity of mobile-devices, many mobile applications are currently built using

web-standards to achieve a better compatibility across the different platforms. With

WebOS4 there even is an operating system for mobile-phones and embedded-devices

which allows to develop native applications with web-technologies. But this evolution is

not restricted on the mobile-market. Microsoft announced the release of Windows 8, an

operating system optimized to be used with a touchscreen. Windows 8 also picks up the

trend of so-called apps, small single purpose applications with an easy to use interface,

implemented with HTML, CSS and JavaScript.

Programs written in JavaScript can even be found on server-side. With the dramatic

performance improvements of JavaScript interpreters like Mozilla’s Spidermonkey or

Google’s V8, those engines are more and more used as standalone interpreters for

server-side scripting. Currently, the most famous environment for this very purpose is

2Gnome 3 is a graphical desktop environment atop of operating-systems like Linux (http://www.gnome.
org/gnome-3/)

3https://www.mozilla.org/en-US/thunderbird
4https://developer.palm.com

2

http://www.gnome.org/gnome-3/
http://www.gnome.org/gnome-3/
https://www.mozilla.org/en-US/thunderbird
https://developer.palm.com

1.1. JAVASCRIPT

Node.js, which uses V8 at it’s core and wraps important operating-system functionality

like file-handling and network-sockets in JavaScript-APIs.

Many of these interfaces are specified by a project, called CommonJS. It provides a

modular, uniform API, that can be implemented by the different libraries and frameworks.

Equipped with such an API, the underlying base-library of an application could easily be

exchanged without the need to re-factor large portions of code. Furthermore, developers

could use the same API in many of their projects, regardless if these are web-applications

or scripts running on Node.js. The team of CommonJS aims to create the kind of

comprehensive standard-library that most languages already have, but JavaScript is still

missing.

1.1.2 JavaScript as a Standard

“I worked there for almost a month, in May switched to client group, spent

10 days prototyping the core language. When Marc saw that, he said: this is

it, it’s Emacs, we’re done, and then immediately pushed to get it shipped.”

- Brendan Eich

Originally Mocha, with all of it’s flaws and it’s beauty, has been created by Brendan Eich

in about ten days. He has been hired by Netscape with the promise “to bring Scheme to

the browser” but subsequently received the condition that it has to look like Java [6]. All

unfortunate decisions aside, Brendan Eich managed to combine a Java-like syntax with

Scheme’s philosophy of functions as first-class citizens and Self’s prototypal inheritance.

The first implementation has been released under the name LiveScript, built in Netscape

Navigator. A renaming to JavaScript followed, that has been the reason for a lot of

confusion ever since. Many developers who are unfamiliar with the language believe

JavaScript to be just the dynamic scripting brother of Java. Against this assumption and

besides it’s syntactical nature, JavaScript is an independent, functional programming

language. In fact it has more in common with Lisp and Scheme then it has with Java. In

1996 Netscape handed JavaScript over to the ECMA International in order to establish a

new industry standard. Since that day, the ECMA-262 standard specifies the language,

furthermore known as ECMAScript. So many different names and implementations

sometimes make it difficult to talk about “JavaScript”. Hence in the remainder of this

paper I refer to the current edition 5.1 of the ECMAScript standard (abbr. ES5) by saying

“JavaScript”.

Although it is called a “standard”, the language itself is not frozen. The technical

committee TC-39 is constantly polishing ECMAScript and trying to solve problems which

are the result from historic miss-decisions. They are also trying to weave in knowledge

and experiences, gathered from the vital community of JavaScript-developers and engine-

implementors to make JavaScript a living language which evolves with time. After having

problems while working on the 4th Edition the term “Harmony” has been coined. It is

a metaphor for handling new ideas in a constructive manner and for working together

open-minded at the next standard: ECMAScript Edition 6 - sometimes also referred to

as ES.Next. This process addresses not only the members of the committee but also

includes ideas and opinions from the JavaScript-community.

3

CHAPTER 1. INTRODUCTION

In an interview5 Eich points out how important user testing is to support the standard-

ization process. Sample implementations of the new language early can be used by

developers to play around with, and therefore help to find bugs and misconceptions in

the specification before the new standard is released. Especially usability issues may be

detected that way. The experience, gathered this way, can flow back into the upcoming

standard.

“We can’t "do science" to decide what features in the enormous feature-vector

hyperspace to standardize” - Brendan Eich

As a matter of fact, implementation and standardization go hand in hand. It is an iterative

approach between the committee, implementors and users, which does not only apply

to JavaScript-standardization but also to HTML, CSS and many other specifications.

Considering the work of WhatWG on HTML5, browser-vendors often are some steps

ahead of the committee, doing field-research with their implementations. It’s like an

evolution of the standard: only the fittest, proven to work stay. Nevertheless, many

developers and managers think of standardization as a three-step process: “First specify,

then implement and finally use”.

1.1.3 Problems and Solutions

The environment in which JavaScript is being used changes almost every day. Hence,

assumptions made at the very moment of language design are not valid anymore. As

Douglas Crockford describes in [3] there are some misconceptions in the JavaScript lan-

guage design often making it difficult to write clean and robust code. The most strikingly

example is the shared global namespace which is used to “link” the different embedded

scripts. On the other hand, some unique functionality like prototypal inheritance is

covered under a verbose syntax. Last but not least, the exact result of a JavaScript

program is highly dependant on the interpreter in which it is being executed. The

combination of different browsers and different versions results in a matrix of numerous

interpreters with diverse capabilities. This makes it very complicated to harmonize the

result of a computation across multiple platforms. There are some strategies addressing

those widespread problems:

1. Design patterns provide ready-to-serve solutions for certain semantic problems.

The revealing module pattern (See chapter 7.1 on page 77) for instance is used to

encapsulate the implementation of a module by only revealing those variables and

functions which form the public interface while hiding all others.

2. Libraries are collections of functions and objects. There is a vast number of

libraries each tailored to serve a special purpose. They may be grouped into three

categories, though many can be classified in multiple categories at the same time:

(a) Base libraries normalize the behavior of different browsers in order to simplify

cross-platform development. One famous example is jQuery6.

5http://www.aminutewithbrendan.com/pages/20110805
6http://jquery.com/

4

http://www.aminutewithbrendan.com/pages/20110805
http://jquery.com/

1.1. JAVASCRIPT

(b) High-level language features like classical class-based inheritance or powerful

collections can be implemented as part of a functional library. Ext.JS offers

an extensive object orientation7 while underscore.js provides methods for

improved collection handling like each, map and reduce8.

(c) Frameworks simplify the development of larger applications by providing a

structural foundation programmers can start to build on. The underlying

principle is the inversion of control. Most frameworks also implement the

model view controller pattern. Ext.JS and Sproutcore9 both can be counted to

this group.

3. Despite the dynamic behavior of JavaScript (For further information see [22]) there

are tools for static analysis which provide mechanisms to analyze JavaScript code

at compile time and detect possible problems and inconsistencies before execution.

Two prominent examples for JavaScript code analysis are JSLint10 and DoctorJS11.

4. Special subsets of the JavaScript language enforce security on embedded third

party scripts by either filtering and rewriting (Maffeis and Taly have done some

research on this topic [14]) or by compiling to a capability safe subset of JavaScript

(Also see [13]). A good example for this approach is Caja12.

5. Compiled language extensions and JavaScript language derivatives introduce a

new syntactical frontend for JavaScript and encapsulate the syntactic overhead,

which is often created by common implementation patterns. Examples for this

category are CoffeeScript13, Move14, Kaffeine15 and JS1116.

Since all of the solutions are directed at a partial subproblem, mostly a combination

is chosen to match the requirements of a specific project. But there are limitations

of what libraries and design patterns can do to improve the language. In JavaScript

these boundaries often are of syntactical nature, because most missing features, like

a class-system, can be simply reimplemented. In contrast an unaesthetic syntax (for

semantically simple tasks often in combination with unnecessary complex constructs)

cannot be circumvented that easy. The only solution is to adapt the language’s frontend:

The syntax.

Building on this reasoning I am focusing on the last solution above and present a way to

create custom compiled language extensions with JavaScript as their target language.

1.1.4 Compiled Language Extensions

Supported by the incredible performance gain of JavaScript interpreters in the last

decade more and more projects compile to JavaScript in order to provide an alternate

syntax or make existing software-components usable in the web. Thus JavaScript seems

7http://sencha.com
8http://documentcloud.github.com/underscore/
9http://sproutcore.com/

10http://jslint.com
11http://doctorjs.org
12http://code.google.com/p/google-caja
13http://coffeescript.org
14http://movelang.org
15http://weepy.github.com/kaffeine
16http://js11.org

5

http://sencha.com
http://documentcloud.github.com/underscore/
http://sproutcore.com/
http://jslint.com
http://doctorjs.org
http://code.google.com/p/google-caja
http://coffeescript.org
http://movelang.org
http://weepy.github.com/kaffeine
http://js11.org

CHAPTER 1. INTRODUCTION

to become the “assembly of the web” (Eric Meyer). The list of languages with JavaScript

as it’s compilation target is long [2]. There are compilers for existing languages like

Lisp / Scheme, Smalltalk, Haskell, Ruby, Python, Java, Scala, C# and much more. With

EMScripten (See [30]) there even is a compiler to translate LLVM (abbr. for Low Level

Virtual Machine) assembly to JavaScript. This allows the compilation of all languages for

which a LLVM frontend exists (These include amongst others C, C++, Objective-C, D

and Fortran).

On the other hand new languages like CoffeeScript (including many derivatives), JS11,

Kaffeine, Mochiscript17, Jack18 and Move are emerging. CoffeeScript offers an inden-

tation based programming style similar to Python. JS11 claims itself to be a “compact

version of JavaScript” and for instance reduces the need for semicolons and the function-

keyword. Kaffeine and Mochiscript are supersets of JavaScript and add optional language

features like a shorthand for function declaration or a pseudo-classical object orientation

system.

They all share the goal of simplifying JavaScript-development by providing an individual

syntactical frontend to the programmer. Some of those source-to-source compilers are

written in JavaScript itself and thus can be executed inside of a browser environment.

We will concentrate on this category of compilers out of two reasons:

1. They allow a developer to deliver code in a language alien to the browser while the

client is able to execute it.

2. When developing extensions for JavaScript we apparently have gained expertise

in this language before hand. This makes it reasonable to reduce the number of

utilized languages and stay within JavaScript throughout the development of the

compiler.

1.2 Scope of this Thesis

It is not the goal of this thesis to design yet another programming language that compiles

to JavaScript. Instead, a framework will be presented that allows the creation of custom

extensions to JavaScript in order to a) experiment with these extensions and b) create a

tailored language for individual usage.

My personal motivation is to create individual extensions in order to make working with

JavaScript more comfortable for me. The existing JavaScript derivatives introduce a lot

of interesting features. Most of the time this is an opt-in into the whole package which

also includes undesired features or behavior.

The purpose of this thesis is to be able to compose only those wanted features.

In order to achieve this goal the following chapter 2 roughly runs through the whole

process of compilation. Chapter 3 offers a short look into the different parsing strategies

to present parsing expression grammars as a tool of choice. Based on this decisions

chapter 4 compares four different parser generators implemented in JavaScript. Due to

it’s outstanding extensibility mechanisms OMeta/JS is chosen. As a result an introduction

into OMeta/JS is given in chapter 5.

17https://github.com/jeffsu/mochiscript
18https://github.com/creationix/jack

6

https://github.com/jeffsu/mochiscript
https://github.com/creationix/jack

1.2. SCOPE OF THIS THESIS

Building on this foundation, in chapter 6 a five step solution is shown to create a

syntactical extension for JavaScript. In the same chapter the resulting architecture is

presented as well. The subsequent chapter 7 demonstrates the use of the framework by

implementing four different example extensions. Finally a conclusion and an outlook is

given in chapter 8.

7

Chapter 2

The Compilation Process

Contents

2.1 Lexical Analysis . 10

2.2 Syntactical Analysis . 11

2.3 Tree Transformations . 12

2.4 Code Generation . 13

2.5 Summary . 13

Generally speaking, the translation of one language or dialect (source language) to

another language (target language) is divided into multiple phases. Each of these phases

being

1. lexical analysis,

2. syntactical analysis and tree creation,

3. multiple tree transformations and finally

4. code generation

is shortly described in the remainder of this chapter. A full detailed explanation of

all internal workings can be found at [1] and [18]. Figure 2.1 illustrates the various

phases of the compilation pipeline. It is common practice that each step of the pipeline

is performed by a decoupled module of the compiler or even by a separate program

specialized on that very purpose.

Code Lexer Tokens Parser TranslatorAST GeneratorAST Code

Figure 2.1: The compilation pipeline

The source language is analyzed by a lexer and afterwards by a parser. An abstract

syntax tree is created, translated and finally the code in the target language is generated.

9

CHAPTER 2. THE COMPILATION PROCESS

Nevertheless, the structure of the compiler presented here differs a little from the one

described in [1, chapter 1]. Since we are not targeting machine code as final result

of our compilation process we use abstract syntax trees (abbr. AST) as intermediate

representation. Consequently, all semantical analysis and optimization of the schematic

compiler described below are performed directly on the those trees. The same applies

to the final code generation which operates on the AST as a result of the previous phase.

When discussing the various steps of compilation in the remainder of this paper, the

above pipeline is used as reference architecture.

2.1 Lexical Analysis

The input which is fed into the compiler is the source code written in the source language

(For instance a JavaScript derivate). It is given as a string, which also can be seen as a

stream of characters.

In the first phase a lexical analyzer or lexer (also called “tokenizer” or “scanner”) scans

the stream of characters and partitions it into a stream of tokens. Each token embraces

one or more input characters into a unit of syntactical information. It can be represented

as an object with a type and a value like the following JavaScript-object:

{ type: "ID", value: "foo" }

Regular expressions are often used to recognize the sequence of characters needed to

form a token. Given the following regular expressions

VAR = /var/

EQ = /=/

ID = /[a-zA-Z]+/

NUMBER = /[0-9]+(\.[0-9]+)?/

a lexer could transform the character stream

[’v’,’a’,’r’,’ ’,’f’,’o’,’o’,’ ’,’=’,’ ’,’4’] // as string: "var foo = 4"

into the resulting token stream:

[{ type: "VAR", value: undefined }, { type: "ID", value: "foo" },

{ type: "EQ", value: undefined }, { type: "NUMBER", value: "4" }]

In this example the lexer simply skips over the whitespaces. If whitespaces are requried

as important syntactical information or in order to preserve them during compilation,

those could be saved in dedicated tokens like:

{ type: WHITESPACE, value: " " }

10

2.2. SYNTACTICAL ANALYSIS

Program→ Declaration

Declaration→ var id eq Expr

Expr → number

Expr → id

Figure 2.2: Production rules needed to recognize an input like var foo = 4

2.2 Syntactical Analysis

The stream of tokens created by the lexer serves as input for the second phase - the

syntactical analysis. In that phase a parser analyzes the given input for syntactical

structures and constructs an abstract syntax tree (abbr. AST). The parser utilizes rules

related to the production rules of a context-free grammar in order to check whether a

given input matches the specified language or not.

The grammar

G = ({Program,Declaration,Expr}, {var,eq, id,number}, P, Program)

with P being the set of rules from figure 2.2 could be used to recognize the input

described above.

In order to distinguish between terminals and nonterminals the following convention

is used: Words with a starting uppercase letter like Program describe nonterminals,

lowercase bold words like number indicate that a token (terminal) with the appropriate

type is expected as next item within the input stream. Starting with the nonterminal

Program all occurring nonterminals on the right hand side of a production are replaced

according to the existing rules. It should be noted that we use terminals and tokens

synonymously since from the parser’s point of view tokens are the smallest unit of

information.

Program

Declaration

Expr

var id eq number

(a) A parse tree as a result from pars-
ing var foo = 4

Program

Declaration

id number

(b) An abstract syntax tree

Figure 2.3: Parse trees

Figure 2.3a depicts the parse tree resulting from the input “var foo = 4”. With this

illustration all intermediate steps performed by the parser become visible. This is often

too much information. Most of the time only the concentrated syntactic essence of

a program is needed for further processing. To achieve this, semantic actions are

introduced. With semantic actions it is possible to manipulate the results of a production

11

CHAPTER 2. THE COMPILATION PROCESS

in order to shape the parse tree during it’s creation (Examples of semantic actions can be

found in chapter 5.1). This way a condensed AST as seen in figure 2.3b can be created.

The purpose of an AST is to describe the syntactical structure of a program. Since all

of the upcoming transformation passes are performed on various versions of the AST,

it can be seen as the “intermediate representation” [18] of our compilation-process.

Furthermore, it is important to specify the exact structure of the AST as it serves as an

interface between the different phases.

2.3 Tree Transformations

The third phase - semantical analysis and transformation - consists of traversing and

transforming the AST. These transformations are fulfilled by a translator. In contrast to

the previous phases there are various translations that can be performed multiple times

until the AST matches the desired format. Usually those translations are implemented

using the visitor design pattern [10, p. 331] or by a traversing program called “walker”.

This name pictures the behavior of the program which has to recursively “walk” (or

traverse) all nodes of an AST in order to translate them. According to the visitor

design pattern every “visit” of a node in the AST requires a function to be implemented

for each corresponding node-type. In the remainder these functions are also called

handlers, since it is their purpose to handle a specific node type. Depending on when

the translation of the respective child-nodes is performed, the walking strategy is said to

be top-down (preorder traversal) or bottom-up (postorder traversal) as seen in figure

2.4. The sequence of traversal on the left hand side is A,B, b1, b2, C, c1, c2 whereas on

the right hand side the children are visited first b1, b2, B, c1, c2, C,A.

A

B C

b1 b2 c1 c2

(a) Top-down traversal

A

B C

b1 b2 c1 c2

(b) Bottom-up traversal

Figure 2.4: Top-down / preorder and bottom-up / postorder traversal of a tree

In general, the tree is traversed for mainly two reasons. Firstly, the tree can be processed

to statically analyze the programs structure. For example variable declarations and

their usage may be tracked in order to mangle variable names or to analyze and control

the access to global variables. Secondly, these nodes may be modified while visiting

them resulting in a transformation. These transformations can be used to translate the

format of single nodes, sub-trees or the AST as a whole from one language (or dialect) to

another. On the other hand, conventions like “Always declare variables at the top of the

scope” can be forced that way.

12

2.4. CODE GENERATION

2.4 Code Generation

The final step of each compiler is the generation of code in the target language (e.g.

Assembler or as in our case JavaScript). While most compilers have machine specific code

as their target we focus on translating one high-level language into another. Furthermore,

it is possible to compile into the same language as the source language. This may

sound surprising at first. However, depending on the transformations and optimizations

performed in the previous phases a generation of code in the source language can be

reasonable. One common example for source to source compilation within the same

language are compressors. They aim to minify the overall size of the program, in order

to save bandwidth, by removing unnecessary whitespaces and by shortening variable

names among many other optimizations.

Nevertheless, the most common use case is to output code in a language different to

the source language. Since we are focusing on language extensions for JavaScript the

output of our compiler is always JavaScript itself, whereas the input is a derivative of

JavaScript. The overall transformation can be expressed as

JavaScript′ → ASTJS′ → ASTJS → JavaScript

with JavaScript′ representing any JavaScript dialect and with ASTJS′ being the corre-

sponding abstract syntax tree. This tree is transformed afterwards to match the format

of a generic JavaScript tree ASTJS which is finally translated back to JavaScript-source

code.

"var foo = 4" Lexer "var foo = 4"Parservar foo = 4

Program

Declaration

foo 4

Translator

Figure 2.5: Overview of the compilation pipeline for var foo = 4

Generally speaking, the transformation of an AST to source code is just a special category

of AST translations as described in the previous section. The only difference is that

after this final transformation no other traversal can be performed without repeated

parsing of the generated source. Based on this insight it is possible to further simplify

the compilation process by merging the code generation with the previous phase. Figure

2.5 illustrates the pipeline for the compilation process of input “var foo = 4”. The

input stream is split up into several tokens which feed into the parser. The parser uses

a grammar to translate the token stream into an abstract syntax tree. The tree is then

processed by zero or more translators before a final transformation emits the desired

code in the target language.

2.5 Summary

In this chapter we have seen how the compilation process can be broken down into

several phases. Starting with the lexical analysis a stream of characters is recognized

and transformed into a stream of tokens. The result in turn is passed to the next phase:

13

CHAPTER 2. THE COMPILATION PROCESS

the syntactical analysis. The language which can be recognized by a parser is composed

of the different rules. These rules can be compared to the productions of a context free

grammar. After syntactically analyzing the token stream the parser creates an abstract

syntax tree. Multiple translation passes follow which traverse the abstract syntax tree in

order to analyze and transform it before the final transformation (or code generation)

can be applied.

14

Chapter 3

A little more about Parsers

Contents

3.1 Recursive Decent Parsers . 16

3.2 Extending Recursive Decent Parsers 19

3.2.1 Backtracking . 19

3.2.2 Memoization . 20

3.2.3 Left Recursion . 21

3.2.4 Parsing Expression Grammars 22

3.2.5 Semantic Predicates . 23

3.3 Summary . 23

In section 2.2 we have seen how parsers are used to analyze the token stream in order

to create an abstract syntax tree. To be able to compare the different available parsers

we have to get a little more into detail about how parsers can be built.

Writing parsers is preceded most of the time by designing a grammar for the language

which shall be parsed. For this purpose a context free grammar (abbr. CFG) or the

Backus-Naur form (abbr. BNF) is often used as notational foundation. Commonly, further

subsets of the class of CFGs are created to be able to efficiently implement a parser

or automatically generate it by using parser generators. For instance LL(k)-grammars

describe the subclass of those context free grammars which can be used to create a

top-down parser with a fixed amount of lookahead. In contrast LR-grammars form the

class of grammars that can be used to generate bottom-up parsers. We may group

parsers based on such grammars into categories

1. whether they create the parse tree top-down or bottom-up, or

2. whether they are implemented using a recursive decent or table based approach.

A combination of the possible options results in the matrix as seen in table 3.1.

It is possible to implement a parser as a recursive decent parser, or by using a table

driven model (often in combination with a state-machine). Most of the time parsers

following the recursive decent approach are also of the category top-down (LL)1.

1Pepper showed in [19] that, after a grammar has been transformed into the third normal form, it can be
used to create a recursive decent parser which produces the same output as a classic LR-parser.

15

CHAPTER 3. A LITTLE MORE ABOUT PARSERS

top-down bottom-up

recursive decent LL transformation + LL

table based non recursive LL LR

Table 3.1: Ways to build parsers

Bottom-up parsers (LR) usually offer a less restrictive way to express grammars than

top-down parsers do. For instance it is possible to use left-recursive rules without

the need to refactor the grammar. Nevertheless they also come with a much more

complicated implementation which is nearly impossible to be accomplished by hand. The

same applies to non recursive top-down implementations (in addition they are rarely

used in practice).

Although most of the time we use parser generators to automatically create parsers from

grammars, it is always useful to be able to easily understand the generated source code.

Recursive decent parsers implicitly meet this criterion since every nonterminal maps to a

function in the parser implementation. Using a debugger the programmer always is able

to step through the parsing-process and directly see what parsing-functions are being

applied to match the given input. Furthermore, dividing the parser into modular units

according to the nonterminals can simplify the reuse of parts of the language in other

parsers. Since this simplicity appears to be of major importance (and as we will see

many of the restrictions of the top-down approach can be bypassed), in the remainder

I will focus on recursive decent parsers in general and parsing expression grammars

(abbr. PEG) in special.

Example

In this section small parser is constructed which is able to recognize a subset of the Lisp

language. The context-free grammar

G = ({Program,List, ListItem,Atom}, {(,), ., id,number,eos}, P, Program)

with P being the rules as seen in figure 3.1 describes the language which recognizes

words like (3 . 4) and (add . (4 . (5 . nil))). The token eos depicts the end

of the input stream.

3.1 Recursive Decent Parsers

The first and most intuitive attempt to build a parser by hand is to implement it as a

recursive decent parser. Even if the parser can be built by hand it is always helpful

to outline the grammar of the language like in figure 3.1. A recursive decent parser

can be implemented by simply mapping all nonterminals to parsing-functions. Here

the grammar’s productions are part of the function’s implementation. We assume that

the lexer provides the two functions peek and consume. peek() allows to gather the

next token in the input stream without altering the stream while consume(type) in turn

16

3.1. RECURSIVE DECENT PARSERS

Program→ List eos

Program→ Atom eos

List→ (ListItem . ListItem)

ListItem→ List

ListItem→ Atom

Atom→ id

Atom→ number

Figure 3.1: Production rules describing a subset of Lisp

would remove the next token. If the optional type cannot be matched by the lexer an

error will be thrown.

function Program() {
var result, next = peek();
if(/* next predicts list */) {
result = List();

} else if(/* next predicts atom */) {
result = Atom();

} else {
throw "Expected list or atom";

}
consume(’eos’);
return result;

}

Figure 3.2: Example implementation of the production rule Program

In the implementation of Program, seen in figure 3.2, it gets visible that each of the

choices is mapped to an if-branch trying to predict the appropriate matching-function

by looking at the next token. If the condition is met successfully, the associated sub-rule

is executed. The parser works it’s way top down through the grammar recursively

resolving all nonterminals. It is said to be a predictive parser [1, p. 64-68], because it

uses a fixed amount of lookahead tokens to predict the further flow of control.

function List() {
var first, rest;
consume(’(’);
first = ListItem();
consume(’.’);
rest = ListItem();
consume(’)’);
return [first, rest];

}

Figure 3.3: Example implementation of the production rule List

Since the parser processes the input stream from the Left to the right and the recursive

resolution creates a Leftmost derivation of the grammar, the parser is also said to be

of the category LL(k) [1, p. 222-233]. Here k indicates the fixed amount of lookahead

required for prediction. In our case just one token is used for this purpose, thus the

parser is of the category LL(1). Sometimes more than one lookahead is required to make

17

CHAPTER 3. A LITTLE MORE ABOUT PARSERS

decisions. The easiest solution is to use a circular buffer, which can be implemented in

the lexer. This buffer can store the next k tokens of the stream in an array of length k

utilizing a modulo operation [18, p. 45-48].

Figure 3.3 depicts the sample implementation of the nonterminal List. The function

recursively calls ListItem and finally returns an array containing the captured results.

The implementation of all other functions follows likewise and can be found in appendix

A.3. Parsing the input string “(add . (5 . (4 . nil)))” with the final parser will

result into the array ["add", [5, [4, "nil"]]].

While recursive decent parsers require a modest effort when being implemented by

hand they also exhibit some problems. For a CFG grammar to be LL(k) it requires some

restrictions:

• No left recursion

• No ambiguities in alternative productions

Invoking a rule which calls itself directly or indirectly without consuming any input

can lead to an endless recursion. This limitation can be circumvented by rewriting the

grammar from left-recursion to right-recursion [1]. For instance the grammar

G = ({List}, {item, ,}, P, List)

with P being the production rules

List→ List , item

List→ item

can be rewritten to be right-recursive:

List→ item

List→ item , List

Most rewriting is more complicated than this example because usually the associativity

and precedence of operators has to be preserved [1, p. 193]. Even if rewriting solves

the problem of endless recursion, it often obscures the grammar and adds additional

complexity for implementors and readers of the grammar.

Due to the fact that predictive parsers only use a fixed amount of lookahead no ambigui-

ties in the productions of a nonterminal are allowed.

In other words, the sequence of k upcoming symbols for two productions has to be

disjoint to decide which path to take. In consequence, only one of the alternatives can

derive the empty string. Otherwise the parser cannot decide which empty string it should

accept. Finally, if one alternative production derives the empty string the other may

not start with the same sequence of k terminals that is used right after the nonterminal

which is derived.

18

3.2. EXTENDING RECURSIVE DECENT PARSERS

Example

The simplified production rules describing a JavaScript for-statement

ForStmt→ for (Expr ; Expr ; Expr) Stmt

ForStmt→ for (V arDecl in Expr) Stmt

are not LL(1). Neither they are LL(2) since at least three tokens have to be inspected

until a decision can be made. In general, two rules that start with the same combination

of grammar symbols have to be rewritten using left factoring (See [1, p. 214]). The

rewrite rules applied to the example above result in

ForStmt→ for (ForRest

ForRest→ Expr ; Expr ; Expr) Stmt

ForStmt→ V arDecl in Expr) Stmt

which in turn might be rewritten into the more elegant solution:

ForStmt→ for (ForHeader) Stmt

ForHeader → Expr ; Expr ; Expr

ForHeader → V arDecl in Expr

Every production now begins with another terminal or nonterminal. Depending on

the exact implementation of Expr and V arDecl (which may cause further ambiguity) a

decision can be made right after looking at the first token of lookahead.

3.2 Extending Recursive Decent Parsers

While recursive decent parsers offer a fast implementation which is easy to understand

they also come with certain limitations. This section deals with extensions, that can be

used to bypass some of them.

3.2.1 Backtracking

As we have seen, grammars sometimes can be rewritten to be compatible for predictive

parsing. However, predictive parsers fail when language-constructs cannot be recognized

by solely inspecting a fixed amount of lookahead.

A solution to this problem is backtracking. Here, all available options are speculatively

tried one after another. If an option fails the parser has to rewind the input-stream to the

last position with a successful, match before it can start over and try the next option. The

first successful alternative is accepted, therefore causing the options to appear ordered.

19

CHAPTER 3. A LITTLE MORE ABOUT PARSERS

There are two common ways to implement backtracking parsers. The first one is to

maintain a stack of stream positions. This stack may be compared to a memory of

performed commands in order to be able to “undo” them. Entering a rule, the current

position is pushed onto the stack. If the rule succeeds the new position is accepted and

the stored position is popped off the stack and discarded. In case of failure the position

also is popped off the stack and used to restore the previous state of the parser. Another

way to implement backtracking is to utilize the automatic propagation of exceptions

through the call-stack in order to catch failed trials and restore the previous state.

Statement→ Definition

Statement→ Declaration

Definition→ var id = Expression

Declaration→ var id

Figure 3.4: Grammar describing variable declarations and definitions

The unlimited lookahead of backtracking parsers comes with an exponential performance

penalty. Considering the grammar as seen in figure 3.4 and the input “var foo”, the

parser will speculatively match the first alternative Definition until it reaches =. At

this point the option fails and the second one Declaration is tried. Both var and id are

matched a second time, even if they have been previously parsed with success at the

same position. The following example (figure 3.5) illustrates a possible implementation

of Statement using exception handling for backtracking.

function Statement() {
var result, before = current_pos();

// try alternative speculative
try { result = Definition() }
catch(e) {
set_pos(before);
try { result = Declaration() }
catch(e) {
throw "Expected Definition or Declaration at position " + before;

}
}
return result;

}

Figure 3.5: Backtracking implementation for production Statement

In this example current_pos and set_pos are again functions provided by the lexer to

control the position within the input stream.

3.2.2 Memoization

Two solutions came up addressing the problem of exponential parsing time since it is

not acceptable in many applications:

1. Only use backtracking in those cases an unlimited lookahead is truly required

2. Use memoization to restore the guarantee for linear parse time

20

3.2. EXTENDING RECURSIVE DECENT PARSERS

While ANTLR offers a semantic predicate to trigger backtracking for a special rule [18, p.

51] by hand - other parser generators like OMeta/JS [27] choose the way of memoizing

the results. Bryan Ford [8] rediscovered the concept of memoization, originated in

functional programming, for parsing and named it packrat parsing. Every parsing

result (failure or success) at a certain position is temporarily stored and therefore only

computed once. This methodology guarantees a linear parsing time while still offering

full backtracking support and therefore allows not only arbitrary but unlimited lookahead.

However, the storage cost for memoizing grows proportional to the size of the given

input. Considering the amount of memory in modern computers it appears reasonable

to pay this price. In addition, experiments [20] have shown that in practical use it is

sufficient to memoize the last two recent results of a rule in order to reduce about 99%

of the redundant calls.

var memo = {};
function Definition() {
var pos = current_pos(), mem = memo[pos], result;

// Has already been matched -> skip ahead and reuse
if(!mem && mem.success) {
set_pos(mem.end);
return mem.result;

}
// Result already has been an error
else if(!mem)
throw mem.error;

try {
result = ... // Actually match the production of Definition

} catch(e) {
memo[pos] = { success: false, error: e }
throw e;

}

// Success: save for next time
memo[pos] = { success: true, result: result, end: current_pos() };
return result;

}

Figure 3.6: Memoization implementation for rule Definition

A pseudo implementation of the rule Definition in a memoizing backtracking parser

can be seen in figure 3.6. When invoking the rule Definition it is checked whether

the computation has been already performed at this very position. In this case the

previous result is being reused regardless of success or error. Otherwise it is tried to

match the productions of Definition. The result (again success or error) is cached in

the memoization-object memo to be reused in subsequent processing.

3.2.3 Left Recursion

We have seen that left recursion can be eliminated by rewriting the underlying grammar.

This often results in drawbacks regarding readability and complexity. Warth et al.

showed in [28] that packrat parsers can support left recursion directly by modifying the

memoization-algorithm. This makes it possible to use left-recursion in grammars without

the need to rewrite them manually or automatically.

21

CHAPTER 3. A LITTLE MORE ABOUT PARSERS

3.2.4 Parsing Expression Grammars

All grammars that appeared up to this point have been context free grammars (abbr.

CFG). In CFGs choices are unordered. This often leads to ambiguities when parse-trees

are created using those grammars (See [1, p. 203]). As seen in the previous section,

backtracking parsers implicitly reduce this ambiguities by matching the choices one

after another until one succeeds. With parsing expression grammars [9] (abbr. PEG)

Ford introduced a new class of formal languages that embraces ordering by making

every option a prioritized choice. In difference to CFGs, parsing expression grammars

focus on recognizing languages rather than generating them. The syntax of PEGs is

a combination of CFG and regular expressions (abbr. RE) and looks similar to the

Extended Backus-Naur Form (abbr. EBNF). Likewise a PEG is built up of terminals

and nonterminals which have to be resolved through the use of parsing expressions.

Non-technically speaking, parsing expressions may also be called rules. The components

from which every PEG is built can be found in table 3.2.

’ ’ String Literal

[] Character class as known from regular expressions

. Match any character

(expr) Group to force precedence

expr? Optional occurrence of expr

expr* Zero or many subsequent expr

expr+ Many expr, at least one occurence

&expr Positive lookahead without consuming

!expr Negative lookahead without consuming

expra exprb Sequence of expressions, which have to match in this
order

expra / exprb Ordered choice. If expra does not match exprb is tried

Table 3.2: Operators for parsing expression grammars

The PEG rules as in figure 3.7 specify the same language as it is described by the context

free grammar of figure 3.1.

Lexers are usually described using REs and parsers using CFGs. Yet, in this example

it gets obvious that PEGs allow to describe both of them in a single grammar. Some

nonterminals like Id and Space simply carry out the work of the lexer.

Ford points out that PEGs are both, more expressive than LL(k) grammars and powerful

enough to recognize all LR(k)-languages. Finally, PEGs are by design easy to implement

as packrat parsers and therefore can benefit from backtracking, memoization and the

left-recursion optimizations as described above.

22

3.3. SUMMARY

Program← (List / Atom) Eos

List← ′(′ ListItem Space? ′.′ Space? ListItem ′)′

ListItem← (List / Atom)

Atom← Id / Number

Id← [a− zA− Z_]+

Number ← [0− 9] + (′.′ [0− 9]+)?

Space← ′ ′ / ′\n′

Eos← !.

Figure 3.7: Parsing expression grammar that recognizes a subset of Lisp

3.2.5 Semantic Predicates

Recursive decent as well as table-driven parsers reach their limits when it comes

to decisions depending on context. For this purpose semantic predicates [17] are

introduced acting as a guard for the continuation of rule-matching. Semantic predicates

are tests which have to return a boolean value. They are implemented in the same

language as the parser (the host language) and can be used to differentiate between

otherwise ambiguous rules by either including context-information or computations

in the decision. A semantic predicate can be used for instance to decide whether the

currently parsed ECMAScript 5 code is in strict mode context or not. The following

example grammar is akin to the specification [5].

AssignExpr →?(strict_mode) AssignableExpr = Expr

AssignExpr → LeftExpr = Expr

The semantic predicate indicated by ?(. . .) guards the test for AssignExpr and all

following. If it evaluates to true, the left hand side expression has to be assignable.

This excludes for instance eval and arguments which cannot be reassigned in ES5 strict

mode.

3.3 Summary

In this chapter we have seen that parsers can be created to derive a grammar top-

down (LL) or reducing it bottom-up (LR). We limited our analysis on top-down parsers

only, based on the insight that LR parsers show a large complexity in the matter of

implementation, making debugging of the generated code too difficult. The recursive

decent approach has been sketched as it is the most important implementation of top-

down parsers. We have seen that top-down parsers can be grouped into predicting

parsers and backtracking parsers. While predicting parsers are always using a fixed

lookahead to foresee the next decision, backtracking parsers are utilizing the trial and

error strategy to mimic an unlimited lookahead. The major downside of backtracking

being exponential runtime behavior could be reduced to linear time by memoizing

23

CHAPTER 3. A LITTLE MORE ABOUT PARSERS

intermediate results. In addition, further convenience could be obtained by allowing

direct and indirect left-recursion in packrat parsers.

Finally, semantic predicates have been introduced to break the barrier of context free

grammars. With semantic predicates it gets possible for the parser to select productions

depending on the current context and thus behave context aware.

24

Chapter 4

Existing Parser Generators

Contents

4.1 Comparison of PEG-Parser Generators 26

4.1.1 Concepts . 27

4.1.2 Documentation . 27

4.1.3 Error Reporting . 28

4.1.4 Extensibility . 28

4.1.5 Conclusion . 29

The use of grammars to automatically generate parsers introduces a level of abstraction

that makes it more easy to concentrate on the language itself and “what the parser

should do” instead of focusing on the implementation details. Extensions to the language,

as well as to the parser, can be implemented on this abstraction level, since only the pure

language essence gets visible. In the following, we will notice that this complete separa-

tion of specification and implementation cannot be achieved at all times. Nevertheless,

parser generators are a good starting point for language creation and extension.

There are many existing parser-generators, designed for various purposes, as it may

be seen in the comprehensive lists [2, 21, 11, 29]. The selection can be reduced

a lot by focusing on the parser-generators with JavaScript both as their target and

implementation language. Table 4.1 shows the available parser generators grouped by

the particular class of grammar: bottom-up1, parsing expression grammars and parser

combinators. Parser combinators are a special form of parser generators, since they

generate the parser not once from a grammar but built it at runtime recursively from

smaller parsers. To achieve this they make use of functional programming paradigms

such as higher order functions and monads. This concept is quite powerful but removes

the abstraction from the grammar, because the implementation of the parser is also the

description of the language2.

1Even if jison has a LL-mode it is categorized as bottom-up, since this is the major target of this tool
2For instance the rule A→ B C∗ is denoted as var A = seq(B, many(C))

25

CHAPTER 4. EXISTING PARSER GENERATORS

Therefore, as noticed in chapter 3 we will focus on those tools only which use PEG to

describe the language since PEG-parsers offer a reasonable combination of

• easy to understand source code,

• acceptable performance (improved with memoization),

• flexibility in writing grammars with no ambiguities and unlimited lookahead and

• the unification of lexer and parser.

This leaves us with the four alternatives Canopy, Language.js, OMeta/JS and PEG.js

which are compared in the remainder of this chapter.

Parser Generator Grammar Class URL

JS/CC LALR(1) http://jscc.jmksf.com

jison LALR(1), LR(0),
LR(1), SLR(1),
LL(1)

http://zaach.github.com/jison/

Canopy PEG https://github.com/jcoglan/canopy

Language.js PEG http://languagejs.com/

OMeta/JS Extended PEG http://tinlizzie.org/ometa/

PEG.js PEG http://pegjs.majda.cz/

jsparse Parser Combinators https://github.com/doublec/jsparse

ReParse Parser Combinators https://github.com/weaver/ReParse

P4JS Parser Combinators https://github.com/asmyczek/p4js

Table 4.1: List of Parser generators with JavaScript target written in JavaScript

4.1 Comparison of PEG-Parser Generators

Each of the four parser generators has been tested using a simple Lisp-grammar similar

to figure 5.8. All four grammars can be found in appendix A.1. The performance of the

created parsers has not been tested, because it is not of major concern when experi-

menting with language extensions. Even in a production environment the performance

is not critical most of the time since the compilation, in most cases, will be performed

only once during deployment.

All four generators are written in JavaScript and emit parsers also using JavaScript as

implementation language. Therefore they all can be used within a browser-environment

to compile grammars on the client side. In fact, PEG.js3 and OMeta/JS4 both offer an

3http://pegjs.majda.cz/online
4http://www.tinlizzie.org/ometa-js

26

http://jscc.jmksf.com
http://zaach.github.com/jison/
https://github.com/jcoglan/canopy
http://languagejs.com/
http://tinlizzie.org/ometa/
http://pegjs.majda.cz/
https://github.com/doublec/jsparse
https://github.com/weaver/ReParse
https://github.com/asmyczek/p4js
http://pegjs.majda.cz/online
http://www.tinlizzie.org/ometa-js

4.1. COMPARISON OF PEG-PARSER GENERATORS

interactive playground to write and test grammars. While the PEG.js online generator

is split up into a three step process (write a grammar, provide input to match against

grammar, download compiled grammar) the OMeta/JS online version follows a Smalltalk-

like workspace approach. The latter makes it more difficult for developers unfamiliar

with OMeta/JS to learn the language itself and how to use the parser generator.

A summarized comparison of all four parsers can be seen in table 4.2 on page 30.

4.1.1 Concepts

Canopy and Language.js both can be seen as simple implementations of a packrat parser

generator for PEG grammars. Each of the two offers one extra concept that makes it

unique.

Canopy allows expressions to be annotated with types. In Canopy’s terminology a “type”

can be compared to a mixin or a module. These collections of methods may be included

into an object in order to enhance it. For example an array-node could be equipped with

functionality to print the array’s children.

Language.js offers a concept to add error messages which don’t interrupt the parsing

process when they occur. Instead of terminating they generate a graceful warning.

For instance an omitted semicolon could be automatically be inserted and produce a

syntax-warning.

OMeta/JS and PEG.js both offer a full range of extended PEG features. This includes

semantic predicates as guards for further rule matching and semantic actions to affect

the output of a rule or influence the state of the parser. Semantic actions also can be

used to flexibly shape the abstract syntax tree, which is emitted by the parser.

Parsing expression grammars unite the lexical and syntactical analysis in one grammar.

OMeta takes this concept even a step further by claiming itself to be applicable in every

stage of compilation. This includes the traversal, matching and conversion of the AST.

Hence, not only streams of characters can be matched by an OMeta grammar but every

stream of generic objects. This decision leads to the consequence that no syntax for

character ranges like [a− z] can be found in OMeta. Luckily, this disadvantage can be

circumvented by utilizing the outstanding concept of parametrized rules5.

PEG.js keeps the syntax close to classic parsing expression grammars. The syntax

of OMeta however differs slightly from PEG, since it introduces some novel concepts

like grammar inheritance and higher order rules which had to be embedded into the

language design.

4.1.2 Documentation

Most of Canopy’s documentation covers PEG operators only. The dependency to another

project is not explained in detail, making the setup a burden. Additionally I did not get

the proclaimed key feature of Canopy, the type annotations, to work within reasonable

time. Language.js offers no documentation at all, as a result I was not able to use the

advertised graceful warnings. The most comprehensive documentation of OMeta/JS can

5Thus the range [a− z] can be written as range(’a’,’z’)

27

CHAPTER 4. EXISTING PARSER GENERATORS

be found in [27] but is neither complete nor up to date. For instance no information about

the setup process or component dependencies can be found. Also, new operators have

been introduced in the meantime which are not part of the original thesis. Nevertheless,

the theoretical foundation of the major concepts is explained very well, allowing the

developer to understand how OMeta works basically. The PEG.js documentation provides

a short explanation about the installation and every feature of PEG.js, resulting in the

easiest installation.

4.1.3 Error Reporting

When developing grammars, error reporting is important in order to be able to find flawed

parts in grammars as fast as possible. Secondly, the generated parser should create

meaningful errors to support the user. The implementation of smart error reporting in

PEG-parsers is not as easy as in bottom-up parsers, which detects errors at the moment

they occur. PEG-parsers try alternatives speculatively, hence an error in one alternative

production does not necessarily result in complete failure. Only one of the four parsers

at hand provides a reasonable error reporting, which is PEG.js. It captures all attempts

to match options and uses them for error reporting in case there is no viable alternative:

SyntaxError: Expected "(", ".", "/", ";", character class or whitespace but "=" found.

PEG.js also detects direct or indirect left-recursion in the grammar and reports it as an

error. It is noteworthy that OMeta/JS doesn’t only recognize but also allows left-recursion.

This is achieved by slightly modifying the memoization algorithm as seen in [28].

The idea of Language.js to offer error-recovery utilities in the grammar seems good at

first glance. Nevertheless, the recovery operator % never worked in the experiment,

since the input has always been accepted completely unparsed if an error occurred.

Canopy and OMeta/JS both report the position at which the match failed. As additional

information Canopy reports the last expected option. This can only serve as a small hint,

where the matching process stopped.

4.1.4 Extensibility

Since all four solutions implement parsing expression grammars, they already provide a

basic extensibility in terms of grammar abstraction. Rules can easily be copied from one

grammar to another, without bothering about actual implementation. But this strategy

results in the exact same problems as copy and paste mostly does:

1. Changes of the original grammar don’t have influence on the derived grammar.

2. Duplicated rules lead to

(a) larger and untidy grammars,

(b) maintenance overhead.

PEG does not offer a way to build modular grammars and reuse rules of foreign grammars.

Nevertheless, Canopy bundles all rules for a grammar inside a module which can be

28

4.1. COMPARISON OF PEG-PARSER GENERATORS

compared to mixins6. This may simplify the composition of two different grammars into

one parser. Even if this modular composition of grammars is not an explicit target of

Canopy, it may be achieved with just a few adaptations of the source code. If a rule is

specified in two grammars one of these rules simply overrides the other. Hence, only

disjoint grammars can be composed or an overriding order has to be clearly specified.

This strategy however does not allow to invoke overridden rules nor does it implement a

true grammar inheritance.

These concepts are part of OMeta/JS where one grammar can inherit from another

and is still able to explicitly call overridden rules using a dedicated super-call operator.

Additionally grammars don’t have to inherit from one another to be composed. OMeta/JS

allows the invocation of foreign-rules resulting in the input stream to be borrowed by

the foreign grammar. When the foreign-rule has been matched the control-flow returns

back to the original grammar.

4.1.5 Conclusion

OMeta/JS is not flawless and hence some downsides became visible in the comparison.

The setup process and the rich feature list are insufficiently documented. In addition, it

cannot compete with the more matured error-reporting of PEG.js. Nevertheless, since

we focus on extending a language, the reuse of grammars in order to extend them is

of highest precedence. The valuable concepts of OMeta/JS address this very purpose.

Additionally, OMeta/JS implements most of the extensions a recursive decent parser has

to offer. It is packed with memoization and automatic left recursion elimination. The

support for higher order rules somehow makes it comparable with a parser combinator.

Furthermore it supports the inheritance of grammars and therefore is the best pick for

parsers which are easy to extend. Despite of the missing extension mechanisms PEG.js

appears to be a solid, matured parser generator and probably would have been the tool

of choice in another context.

6Mixins are a restricted form of multi-inheritance. They allow to mix in modular behavior to an existing
class without the drawbacks of inheritance

29

CHAPTER 4. EXISTING PARSER GENERATORS

Canopy Language.js OMeta/JS PEG.js

Implementation
Language

JavaScript JavaScript JavaScript JavaScript

Target Language JavaScript JavaScript JavaScript JavaScript

Grammar PEG PEG OMeta PEG

Parsing Algorithm Packrat Packrat Modified Packrat Packrat

Dependencies
(Compiletime)

js.class - - -

Dependencies
(Runtime)

js.class - Parent-grammar -

Documentation 3 7 3 3

Error Reporting
(Compiletime)

7 3 3 3

Error Reporting
(Runtime)

3 7 3 3

Readable Code
Output

3 7 3 3

Left-recursion 7 7 3 3

Semantic Predicates 7 7 3 3

Semantic Actions 7 7 3 3

Grammar Reuse 3 7 3 7

Influence on
AST-Format

3 7 3 3

3 supported feature

3 partially supported feature with limited usability

7 feature which is either not supported or could not be used in reasonable
time

Table 4.2: Comparison of PEG-Parser Generators

30

Chapter 5

OMeta

Contents

5.1 Writing Grammars . 33

5.1.1 Differences to PEG . 33

5.1.2 Pattern Matching . 34

5.1.3 Semantic Predicates . 35

5.1.4 Semantic Actions . 36

5.1.5 Parametrized Rules . 38

5.1.6 Higher-Order Rules . 39

5.1.7 It’s all about Context: OMeta or JavaScript? 40

5.1.8 Grammar Inheritance . 41

5.1.9 Foreign Rule Invocation . 42

5.2 Using OMeta/JS . 43

5.2.1 Usage of OMeta Grammar Objects 44

5.2.2 Stateful Pattern Matching . 45

5.3 Summary . 46

Writing parsers by hand can be quite tedious and error-prone, especially when imple-

menting a language specification that still evolves or when experimenting with novel

language features. Small changes in a grammar may result in complex changes of the

parser. Thus, parser-generators are often used to automate this process. As we have

seen in chapter 2 on page 9, a compiler commonly consists not only of a parser but also of

a lexer, several translators and finally a code-generator - all of which being created with

different tools or frameworks and maybe even using different languages. Alessandro

Warth created OMeta to unify all of those tools in order to flatten the learning curve and

to make experimenting with languages more easy [27].

The goal of this chapter is to provide a solid understanding of how to work with OMeta

and specially OMeta/JS. Of course Warth’s thesis [27] is a great source for background

information and this chapter may be seen as a restructured, updated and enriched form

of [27, chapter 2].

OMeta is a general purpose pattern matching language based on parsing expression

grammars (abbr. PEG). As we have seen PEGs unite the flexibility of CFGs and REs and

31

CHAPTER 5. OMETA

thereby remove the separation between the process of lexical analysis and parsing. They

usually operate on characters as terminals and hence can only be used to match strings.

OMeta circumvents this limitation by allowing every object of the host-language to be a

terminal, thus making it possible to use OMeta in almost every step of the compilation

process. It also offers many extensions to PEG like parametrized rules, higher order

rules and grammar inheritance described in the remainder of this chapter.

Working with OMeta can be split into three single steps:

1. Write your grammar in OMeta-language

2. Set up the OMeta-compiler and compile the grammar

3. Use the resulting grammar-object to match and translate input-streams

OMeta uses memoization to increase performance and therefore reduces the drawbacks

resulting from backtracking (Also see [8] and chapter 3.2.2 on page 20). In addition, it

allows the use of left-recursive rules by modifying the memoization algorithm (See [28]

and [27, chapter 3]).

OMeta/JS

Being a generic language for grammar-description, OMeta has been implemented in

many different host languages. In the remainder we will describe Alessandro Warth’s

reference implementation written in JavaScript (called OMeta/JS1), as it is close to the

one used in the remainder of this thesis. Some examples of this chapter are taken from

the ES5Parser presented in section 6.1.2 on page 51 (The parser itself is based on the

JavaScript-parser delivered with OMeta/JS2).

In order to get an idea of how an OMeta grammar looks like, figure 5.1 shows a grammar

with three simple rules, each separated by a comma. This simplified grammar matches

JavaScript identifiers like foobar, $1 and _global, always starting with rule identifier.

ometa ID {
identifier = nameFirst namePart*,
nameFirst = letter | ’$’ | ’_’,
namePart = nameFirst | digit

}

Figure 5.1: Sample grammar which can be used to match JavaScript-identifiers

Here the structure of every OMeta gets visible. Since OMeta/JS is a combination of the

OMeta-language and JavaScript the keyword ometa is used to announce that a following

section is written in OMeta. After the introductory keyword the name of the OMeta

grammar is expected before it’s implementation can take place inside of the following

block. Compiling this grammar to JavaScript results in a JavaScript-object ID containing

1The source of Alessandro’s OMeta/JS implementation is available at github https://github.com/
alexwarth/ometa-js

2Information about OMeta and OMeta/JS as well as an interactive Workspace can be found at http:
//www.tinlizzie.org/ometa/

32

https://github.com/alexwarth/ometa-js
https://github.com/alexwarth/ometa-js
http://www.tinlizzie.org/ometa/
http://www.tinlizzie.org/ometa/

5.1. WRITING GRAMMARS

three methods to match the specified rules. Since no parent-grammar has been specified

OMeta assumes that it’s base grammar OMeta should be the parent. Hence, a prototypal

link to an object representing this base grammar is added as depicted in figure 5.2. Here

we can get a quick idea of how OMeta/JS models the inheritance of different grammars

by using the prototype-chain.

[[Prototype]]

ID

nameFirst

namePart

identifier

letter

OMeta

digit

exactly

Figure 5.2: The two grammar objects ID and OMeta

5.1 Writing Grammars

The most important part of implementing a parser by the means of a parser generator

is to write a grammar. To accomplish this task we will start off by taking a look at the

different tools and syntax elements provided by OMeta.

5.1.1 Differences to PEG

OMeta supports almost all default operators that can be found in PEG. Nevertheless,

new features have been introduced which conflict syntactically with existing operators.

Table 5.1 illustrates the differences to the syntax as it is known from PEG (Also see

original table 3.2 on page 22).

expra | exprb A pipe is used instead of a slash to express prioritized
choice

anything Instead of a single dot the rule anything is used to con-
sume the next input without matching it

∼ expr Negative lookahead uses tilde-character instead of an
exclamation mark

"rule" Shorthand for application of the rule token("rule")

Table 5.1: Syntactical differences from OMeta to original PEG

Character classes as they are known from regular expressions and adopted by PEG do

not have an equivalent syntax in OMeta. In order to allow the pattern matching of lists

(as it can be seen in section 5.1.2 on the following page), brackets had to be reserved

and thus could not be used to match character classes. Regardless of the missing syntax

it is still possible in OMeta/JS to implement a character range by using parametrized

rules. For example the class [a-z] can be matched by the rule range(’a’, ’z’)3.

The use of basic PEG operators within OMeta is demonstrated in figure 5.3.

3The implementation of range can be found in appendix B.2 on page 107

33

CHAPTER 5. OMETA

ometa Numbers {
number = decimal,
decimal = ’-’? decimalInt+ (’.’ digit+)? expPart?

| ’-’? (’.’ digit+) expPart?,
decimalInt = ’0’ | (~’0’ digit) digit*,
expPart = (’e’ | ’E’) (’+’ | ’-’)? digit+

}

Figure 5.3: A sample grammar to match decimal numbers, starting with rule number

As already known from PEG, the lookahead operators assure whether the next input-

token does (& positive) or does not (~ negative) match the given expression. It is

important to note that thereby no input is consumed. In this example it gets visible

how the negative lookahead operator is used to exclude the character ’0’ which would

otherwise be matched by the rule digit. The starting point for this grammar is the

rule number. The grammar matches all allowed decimal numbers like -3, 4.7, .6 and

6.18e-1.

5.1.2 Pattern Matching

In contrast to PEG which only allows to match a stream of characters, OMeta is able to

match a stream of arbitrary host-language objects[27]. There are quite a few types of

objects in JavaScript for which OMeta provides a dedicated syntax as it can be seen in

table 5.2.

’c’ Single characters can be matched using the character
literal notation.

“string” Matches a sequence of characters (Please note, that
the string is delimited by two backticks on the left
and two single quotes on the right hand side)

1337 Numbers can be matched natively

[char ’o’ ’o’] The list notation allows matching a sequence of arbi-
trary objects inside of a list.

Table 5.2: Syntax for matching different types of objects

Like with PEG, the most basic terminals a parser may recognize are single characters and

sequences of characters. When matching a string like “var foo = 4” OMeta destructs

this string into it’s single characters in order to form a stream:

[’v’, ’a’, ’r’, ’ ’, ’f’, ’o’, ’o’, ’ ’, ’=’, ’ ’, ’4’]

Here it gets visible why every single character has to be matched separately. If a

sequence of characters like var is expected this has to be denoted explicitly by using the

character sequence notation “var”. In fact, this notation is semantically equivalent to

’v’ ’a’ ’r’.

34

5.1. WRITING GRAMMARS

In contrast to parsers, a translator has to work on structures. For this task OMeta

provides a notation that can be used to match lists. Consider the task of converting a

prefix notation, as it is used by Lisp, to be infix. Given the following input

[’+’, 5, [’-’, 3, 8]]

a grammar has to recursively match the contents of the lists. Like already said, this can

be performed by using the list-notation as seen in figure 5.4.

ometa PreToInfix {
list = [operator:op content:first content:second] -> [first, op, second],
content = list | number,
operator = ’+’ | ’-’ | ’*’ | ’/’

}

Figure 5.4: OMeta/JS grammar to convert prefix to infix notation

Please note that in contrast to JavaScript arrays, the elements inside of the list-notation

are separated by whitespaces and not commas. To transform the output of rule list,

semantic actions are used which will be presented in subsequent sections.

Generally speaking, every JavaScript object may be matched by utilizing predicates. For

example the rule

expressions = anything:n ?(n.name == expr)

can be used to match objects like { name: “expr”, contents: [] }. Until now,

there is no special pattern matching syntax for generic objects.

5.1.3 Semantic Predicates

Since OMeta/JS is an aggregation of OMeta and JavaScript, we can use JavaScript inside

of semantic predicates to refine the matching process. The host-language expression

inside of a semantic predicate should evaluate to a boolean value. If the resulting value

is falsy4, the matching of the current rule is assumed to be failed and therefore aborted,

whereas a truthy value leads to a continuation of the matching-process. Figure 5.5

illustrates a grammar using predicates to differ between even and odd digits in order to

match numbers like 381496. It gets visible that the prefix-operator ? is followed by a

JavaScript expression which may, but don’t necessarily has to be wrapped in parenthesis.

Of course the function even could have also been inlined in the semantic predicates like:

even = digit:d ?(parseInt(d) % 2 === 0)

In OMeta, the result of the last expression within a rule always is used as result of the

rule. Since the semantic predicate returns a boolean value, the result of the rules even

and odd is this boolean value and not the digit itself. To bypass this problem the capture

operator <...> is used that records all input which is matched by the enclosed rules.

4To discriminate between the boolean value false and all other values that behave equally when used in
conditions the terminology falsy (or likewise truthy) is used (See Douglas Crockford [3]). Falsy values include
for example false, undefined, null the empty string “” and 0.

35

CHAPTER 5. OMETA

function even(digit) {
return parseInt(digit) % 2 === 0;

}
ometa EvenOdd {
even = digit:d ?even(d),
odd = digit:d ?(!even(d)),
number = <(even odd)+ even?

| even
>:n -> parseInt(n)

}

Figure 5.5: A grammar to match numbers with alternating even and odd digits

Another solution to this problem would have been to add a semantic action at the end of

each rule:

even = digit:d ?even(d) -> d,

odd = digit:d ?(!even(d)) -> d,

Semantic predicates also can be used to include context information in matching deci-

sions. For example it might be checked whether a variable, to which a value is about to

be bound, has been declared before hand.

5.1.4 Semantic Actions

Usually, it is the job of a grammar to decide whether or not an input can be matched

using the given rules. Although this is a useful information, we often need to work

with the recognized input in order to extract information or to modify it. For example

a stream of strings may be transformed into an intermediate representation like an

abstract syntax tree. The other way around, an existing AST can be used as input to a

translator to be converted to code again. For this purpose the output of each rule may

be transformed using so called semantic actions.

There are three different ways to express semantic actions in OMeta. The first one,

which is mostly used to transform the output of a rule, is denoted by the arrow-operator

->. It may appear after each expression and is delimited by either a comma (end of

rule), pipe-character (end of choice) or closing curly brace (end of grammar). Hence,

it’s precedence is higher than a choice, but lower than a sequence. If a programmer

wants to define a semantic action to manipulate the output of a choice-expression as a

whole and not for a individual option, the choice has to be wrapped in parenthesis. The

implementation of a semantic action can be any expression of the host language.

Again, if no semantic action is given for a rule, the result of the last applied expression

is used without any transformation.

The grammar in figure 5.6 is a enhancement of the grammar as seen in figure 5.3.

Semantic actions are used in rule decimal on the right-hand side of every choice to call

the JavaScript function parseFloat(n). But where does the identifier n come from and

to which value is it bound? The capture operator, denoted by < ... > captures the

input used to match the inner expressions. It is very useful if we want to work with the

consumed input independently of any transformations performed in the descendant rules.

36

5.1. WRITING GRAMMARS

ometa Numbers {
number = decimal,
decimal = <’-’? decimalInt+ (’.’ digit+)? expPart?>:n -> parseFloat(n)

| <’-’? (’.’ digit+) expPart?>:n -> parseFloat(n),
decimalInt = ’0’ | (~’0’ digit) digit*,
expPart = (’e’ | ’E’) (’+’ | ’-’)? digit+

}

Figure 5.6: A grammar to match decimals, using semantic expressions

Using the property assignment operator lhsExpr:id the result of evaluating the left-

hand side expression is bound to the identifier, which can be accessed in every associated

host-language code like semantic actions, predicates and calls to parametrized rules.

When trying to find out in which scope an identifier can be used, we have to recall that

every rule is compiled to it’s own JavaScript function. Thus, every variable defined by

the assignment operator can be accessed only within the corresponding rule.

expr-> host_expr semantic action, transforms the result of expr, us-
ing an expression in the host language

{ host_expr } semantic action, equivalent to the above except
that it is delimited by }

!host_expr semantic action, equivalent to the above. Com-
monly used in combination with parenthesis like !(
host_expr)

?host_expr semantic predicate, boolean expression evaluated
while matching

rule(expr) parametrized rules, expr is prepended to the input
stream before applying rule

^rule super-call operator, applies rule of the parent gram-
mar object

Foreign.rule call of a rule, residing in a foreign grammar

<expr> capture-operator, memorizes and returns all input
consumed by expr

@<expr> index-capture-operator, returns an object that con-
tains the indexes bordering the consumed input
(e.g. { fromIdx: 3, toIdx: 7 })

expr:id assignment operator, binds the result of expr to a
rule-local variable id

Table 5.3: Summary of OMeta syntax, additional to PEG operators

Table 5.3 gives an overview over the different syntactical extensions OMeta offers.

The first three entries of the table all represent semantic actions. They only differ in

their syntax. Semantic actions are executed during the matching process according

to their position within a rule. The side-effects created by semantic actions are not

37

CHAPTER 5. OMETA

automatically undone by OMeta if a rule does not match in the end. The behavior of

creating side-effects is visually emphasized by the exclamation prefix notation.

5.1.5 Parametrized Rules

OMeta adds even more flexibility to the grammar by allowing the use of arguments on

rules, so called parametrized rules. Those rules behave basically the same as the one

without arguments. The passed arguments are simply prepended to the input stream,

before the rule is matched. Consequently, parametrized rules also support pattern

matching on their parameters. Thus, the notation rule :a :b is only shorthand for rule

anything:a anything:b.

Figure 5.7 shows an extension to the above grammar EvenOdd. Instead of defining

multiple rules, one for each digit-type, there is only one parametrized rule.

ometa EvenOdd {
even :yes = digit:d ?(yes === even(digit)),
number = <(even(true) even(false))+ even(true)?

| even(true)
>:n -> parseInt(n)

}

Figure 5.7: Grammar using parametrized rules

It is important to point out that the call-arguments of parametrized rules can be any

valid expressions of the host language. The result of the expression is than bound to the

parameter of the invoked parametrized rule. In the first call to even the JavaScript value

true is bound to the parameter yes and therefore further can be used in all locations

where host-language is allowed.

Another example for parametrized rules is the built-in function token(tok). As previously

stated, OMeta can be used as “one shoe fit’s it all“ solution for the diverse compilation

stages. The token method helps to combine “scannerful” and “scannerless” parsing[27].

The stage of lexical analysis, usually performed by a lexer, can be included in the

parser-grammar as seen in figure 5.8.

Starting with rule list the grammar can be used to parse simple Lisp-like lists. The

given input “(plus 4 (minus 8 6)” results in the tree consisting of objects, as seen in

ometa Lisp {
// Lexer
identifier = <letter+>:id -> { type: "Id", value: id },
number = <digit+>:num -> { type: "Number", value: parseInt(num) },
punctuator = ’(’ | ’)’ |’.’ | ’,’,

token :tt = spaces (punctuator:t ?(t == tt) -> t
| (identifier | number):t ?(t.type == tt) -> t
),

// Parser
list = token("(") (atom | list)+:cs token(")") -> { type: "List", content: cs },
atom = token("Id") | token("Number")

}

Figure 5.8: Lexical analysis inside a parsing-grammar

38

5.1. WRITING GRAMMARS

figure 5.9. Every object has one property type to specify it’s kind. Additionally identifier

and numbers save their values in the property value. Lists in turn store the contained

list items in the property content.

{ type: "List", content: [
{ type: "Id", value: "plus" },
{ type: "Number", value: 4 },
{ type: "List", content: [
{ type: "Id", value: "minus" },
{ type: "Number", value: 8 },
{ type: "Number", value: 6 }]

}]
}

Figure 5.9: Result of parsing the input “(plus 4 (minus 8 6)”

As it gets clearly visible the lexer is included directly in the parser grammar. Every time

a token needs to be scanned the method token is invoked, providing the required type

of token as a string. OMeta provides a special syntax for this kind of invocation since it

is used pretty often. Instead of writing token(“Id”) the programmer might simply use a

shorthand syntax “Id”. At first glance this might easily be mixed up with the matching of

strings. Hence, it is important to keep in mind that strings are broken down to character

sequences and therefore the syntax “string” has to be used.

Using the shorthand notation for token the parser rules may be rewritten as

list = "(" (atom | list)+:cs ")" -> { type: "List", content: cs },

atom = "Id" | "Number"

which is much easier to read and write.

5.1.6 Higher-Order Rules

Among the methods of the OMeta base grammar the rule apply(rule_name) can be

found, which expects rule_name to be a string and invokes the rule in place. Therefore, a

call to apply(“myrule”) is identical to myrule. Equipped with apply and parametrized

rules it is possible to create higher order rules by passing rule-names as arguments. The

higher order rule itself can in turn make use of apply. In OMeta some built-in functions

are implemented that way. In appendix B.2 a pseudo implementation of the base grammar

with all of it’s built-in rules can be found. For example let’s analyze listOf(rule, sep)

that can be used to match a list of items. The internal implementation is close to:

listOf :rule :sep = apply(rule):f (token(sep) apply(rule)):r* -> [f].concat(r)

| empty -> []

Each item has to match rule and is delimited by the provided separator. Here we can

see how the given rule is applied at all positions where a matching item is expected.

Considering the grammar of figure 5.6, a call to listOf(#decimal, ’,’) could match

an input string like “1.5, 4, -8”. The usage of the dubious literal #decimal as first

argument will be explained in the following section.

39

CHAPTER 5. OMETA

5.1.7 It’s all about Context: OMeta or JavaScript?

To write comprehensive grammars in OMeta it is necessary to distinguish between

the two languages we are working with. Firstly the OMeta language and secondly

the underlying host-language: JavaScript. Outside of a grammar definition only host-

language code is valid. For example we are not able to write OMeta rules outside of a

grammar.

// here only JavaScript can be written
ometa Grammar {
// only OMeta is allowed right here
rule :a :b = { ... } otherRule !(...) -> ..., // semantic action
otherRule = rule:c ?(...), // semantic predicate
start = rule(..., ...) "rule" apply(...) // parametrized rule

}
// again: just JavaScript is allowed

Figure 5.10: Allowed usage of JavaScript within a OMeta grammar

The other way around, OMeta is our primary language inside of a grammar definition

as it is illustrated in figure 5.10. Here we can see that host-language code is valid

outside of a grammar (... ometa Grammar {} ...), inside of semantic predicates

(?(...)), inside of semantic actions ({...}, !(...)and -> ...) and inside the call of

parametrized rules (rule(...)). At every occurrence of an ellipsis we might implement

a JavaScript expression5.

However, there are some ambiguous notations regarding strings. For example, as we

have seen, the notation “attention” in OMeta-language context is not a string. It is

equivalent to calling the parametrized function token and passing the JavaScript string

value attention as first argument. In contrast, appearing in host-language context

“attention” represents a string. In order to prevent this confusing usage of double

quoted string, the word literal (e.g. #singleWord) has been introduced to host-language

context. Table 5.4 provides an overview of string literals and their semantics depending

on the context of use.

" " ’ ’ “ ”

OMeta - token(...) char char-sequence

JavaScript single word string string string -

Table 5.4: Semantics of string-literals depending on the context

All host-language sections inside of a grammar are compiled into individual functions

which are called in the context of the grammar-object. Due to this fact, the binding of

this in these sections is always the grammar-object itself.

5In the first case all JavaScript statements are also allowed

40

5.1. WRITING GRAMMARS

5.1.8 Grammar Inheritance

One of the most important features in OMeta is the reuse and composition of grammars.

Grammars can make use of other grammars in two ways. Firstly, a grammar can inherit

from another. This is expressed by using the inheritance operator <: followed by the

grammar to inherit from. If no parent is given, the grammar implicitly inherits from

the OMeta base grammar which is stored in the object OMeta. Thus writing grammar

Numbers {} and grammar Numbers <: OMeta {} is equivalent. Of course the parent

grammar needs to be compiled first before it can be extended.

For example let’s extend the number grammar to additionally allow hexadecimal numbers

to be matched. The implementation of this extension can be seen in figure 5.11.

ometa HexNumbers <: Numbers {
range :from :to = char:x ?(from <= x && x <= to) -> x,
hexDigit = digit | range(’a’, ’f’) | range(’A’, ’F’),
hex = ‘‘0x’’ <hexDigit+>:ds -> parseInt(ds, 16),
number = hex | ^number

}

Figure 5.11: Grammar that matches decimal and hexadecimal numbers

The function range is introduced to check for character ranges. The implementation

is identical to the one in appendix B.2. It is realized as a parametrized rule expecting

two parameters - the lower as well as the upper boundary. Rule hex indirectly uses this

function to match an arbitrary number of hex digits and returns the decimal value6. The

last rule number matches either the rule hex or ^number. The latter is a super-call to the

parent-grammar applying rule number. In general, if a rule isn’t defined in the grammar,

the lookup automatically continues recursively with the parent-grammar. Given the

situation that a rule with the exact same name is defined in the child grammar, just

like number, this rule is preferred and shadows the implementation of it’s parent. This

behavior is similar to the one found in classical object orientation. Nevertheless, it is

still possible to access the parent-rule by using the super-call operator. Figure 5.12

illustrates how OMeta/JS uses the prototypal chain to realize the inheritance of the

different grammars.

[[Prototype]]

number

hex

hexDigit

number

Numbers

decimal

decimalInt

letter

OMeta

digit

exactly

HexNumbers

expPartrange

[[Prototype]]

Figure 5.12: Grammar inheritance in OMeta/JS

Another example for using this inheritance-mechanism is to create debugging rules:

log :rule = ^pos:p <apply(rule)>:t !console.log("pos "+p+":", t) -> t,

next = ^pos:p &anything:t !console.log("pos "+p+":", t)

6The second argument of the JavaScript function call parseInt(ds, 16) is the radix parameter, specifying
that the hexadecimal system should be used for parsing

41

CHAPTER 5. OMETA

The first rule log is a higher order rule expecting the rule name to apply. It can be used

to log the position and input consumed by a special rule. The second rule next is a little

easier to understand. A positive lookahead is used to log the position and the upcoming

element of the input-stream without consuming it.

Since at the end of the inheritance-chain every grammar implicitly extends OMeta, it is

important to know which rules are provided by this special grammar-object. For this

purpose a pseudo implementation of all rules the base object offers can be found in

appendix appendix B.2.

5.1.9 Foreign Rule Invocation

Building on top of existing grammars, the mechanism of inheritance is a big advance to

the classical way of combining two grammars: Copying both grammars into one file and

hope there are no name-clashes. But single inheritance fails when we want to include

two or more grammars into a new one. This is when it comes to foreign rules.

Given the example we want to implement a syntax highlighter that automatically detects

SQL strings within another language (for instance JavaScript). Equipped with the two

grammars JavaScript and SQL this task can be accomplished pretty easy as it gets

visible in figure 5.13.

ometa Highlighter <: JavaScript {
string = ’"’ SQL.statement:c ’"’ -> { type: "SQLString", content: c }

| ^string
}

Figure 5.13: Example usage of foreign rules to embed SQL within JavaScript strings

In this example we are extending the rule string to also match SQL strings. If the

contents of the string cannot be recognized by the foreign rule SQL.statement, the

rule falls back to the parent implementation of grammar JavaScript. This example

illustrates how rules of other grammar objects can just be applied as if they where part

of the current grammar. Nevertheless, in contrast to grammar inheritance, applying

foreign rules results in a change of contexts. The input stream is just borrowed by the

foreign rule and handed back when the matching has been finished [27]. Returning the

flow of control is performed anyway, independent of success or error.

This procedure can be compared to switch the track for matching and continue on this

track as far as we can. After the matching on that track is finished we change the lane

again and return to the original grammar. Of course, just like every own rule, the track

can always be a dead end.

Figure 5.14 illustrates the dependencies of the different grammars involved in the

previous example.

Again, it is an important requirement that all grammar objects have to be loaded in the

same environment before they may be used for inheritance or foreign rule invocation.

42

5.2. USING OMETA/JS

[[Prototype]]

string string

JavaScript OMetaHighlighter

[[Prototype]]

statement

SQL

[[Prototype]]

Figure 5.14: Using foreign rules and grammar inheritance

5.2 Using OMeta/JS

In the previous section we have learned how to write sophisticated OMeta/JS grammars.

In order to be able to use the grammars in combination with the reference implemen-

tation7 we have to do some preparations. The first step is to load all files required to

compile the grammars. A list of those files, together with a short description, can be

found in appendix B.1 on page 106.

Due to the large amount of files it appears reasonable to concatenate them to one file,

which we may call ometajs.js in the remainder of this section. After all, in order to use

OMeta/JS the most important three objects implemented in those files are:

OMeta The base grammar object every grammar inherits from.

BSOMetaJSParser This grammar object can be used to parse OMeta/JS grammars, start-

ing with the rule topLevel.

BSOMetaJSTranslator This grammar object can be used to compile the tree, produced

by BSOMetaJSParser, to JavaScript code. The starting rule for this grammar is

trans.

Since OMeta/JS is implemented in JavaScript we may use it inside of a browser environ-

ment. In the following, we will set up OMeta in a few steps. For this purpose, we create

a html file called ometa.html with the contents of figure 5.15.

<!DOCTYPE html>
<html>
<head>
<title>OMeta/JS</title>
<script src="ometajs.js"></script>
<script language="OMetaJS" id="grammar"> ... </script>
<script>
...

</script>
</head>
<body></body>

</html>

Figure 5.15: Contents of ometa.html

The necessary files to compile and execute OMeta/JS grammars are included in the first

script-tag. Inside of the second script-tag with attribute language set to OMetaJS we

7http://github.com/alexwarth/ometa-js

43

http://github.com/alexwarth/ometa-js

CHAPTER 5. OMETA

may now add any OMeta/JS grammar like the Numbers grammar, as seen in figure 5.6.

The setup of the compilation process, as described in the following, takes place within

the third script-tag. First of all we need to retrieve the textual source of our grammar

definition. This can be easily achieved by requesting the script-tag and reading property

innerHTML.

var source = document.getElementById("grammar").innerHTML;

The next step is to parse the source, using BSOmetaJSParser which is already loaded

into the global namespace by including ometajs.js. Like every OMeta object the parser

provides the two methods match and matchAll. At this point only the latter one is of

significance.

matchAll(input, rule, args?, failure?)

The function requires at least two arguments. The first argument, representing the

input which is about to be matched by the grammar, has to be a streamable object. This

only applies to strings and arrays by default. The second argument rule specifies the

starting point of the matching process. The remaining arguments are optional. If the

starting rule is a parametrized rule, the required arguments can be prepended to the

input stream by providing an array as third argument args. Finally an optional callback

function failure can be registered to handle errors.

var tree = BSOMetaJSParser.matchAll(source, ’topLevel’);

The result of the matching process is an OMeta/JS language parse-tree, representing

our grammar definition. In order to receive valid JavaScript code we need to translate

this tree using the BSOMetaJSTranslator object and the method match. The required

arguments of match are exactly the same like the ones of matchAll, with the exception

that any JavaScript object may be provided as input8. In this case we are matching the

syntax tree resulting from the previous step.

var grammar = BSOMetaJSTranslator.match(tree, ’trans’);

After applying the above line, the variable grammar contains a textual representation of

JavaScript code. To bring it to life and in order to actually use our grammar object we

have to evaluate the JavaScript-string.

eval(grammar);

This introduces a new variable in the global scope named identical to the compiled

grammar. In this case the variable Numbers will contain the desired grammar object.

5.2.1 Usage of OMeta Grammar Objects

In the previous we learned how to parse, translate and evaluate our grammar. The

result is a new grammar-object introduced within the global scope. Compiling the above

8For instance the OMeta grammar ometa Four { n = 4 } will successfully match the number four by
applying Four.match(4, ’n’)

44

5.2. USING OMETA/JS

grammar will result in a Numbers object which has a prototypal link to the OMeta object.

The usage of this grammar object is equivalent to the above usage of BSOMetaJSParser.

A matching process for instance could look like:

Numbers.matchAll(’1.534e-2’, ’decimal’)

The result of this expression is the numerical value 0.01534. We also might add a handler

to gather more information about possible failures. In this case we just have to add a

callback function as fourth argument. Currently the third one, awaiting arguments to

pass to the specified rule “decimal”, is not needed and hence set to undefined.

Numbers.matchAll(’1.5f’, ’decimal’, undefined, function(grammar, pos) {

...

})

The first argument provided to the callback function is the grammar object itself. The

second argument indicates the position at which the error occurred.

Generally speaking, the method matchAll is used to match input which is treated as a

stream, while in contrast the method match is used to recognize single objects.

5.2.2 Stateful Pattern Matching

By adding semantic actions OMeta allows not only to manipulate the results of expres-

sions (for instance in order to create the syntax tree), but also to trigger side effects

during the process of matching. This can be really useful, for instance if we want to

gather information such as the occurrence of strings in order to collect them in a string

table. An example of how this task can be achieved is illustrated in Figure 5.16.

ometa SomeParser {
...
string = ’"’ <(~’"’ char)+>:cs ’"’ !this.collect(cs):i -> { type: "String", id: i }
...

}
Parser.initialize = function() { this.strings = []; }
Parser.collect = function(string) {
var i = this.strings.indexOf(string);
if(i === -1)
return this.strings.push(string) - 1;

else
return i;

}

Figure 5.16: Using stateful pattern matching to create a string table

In this example SomeParser makes use of semantic actions like !this.collect to push

all found strings in a shared string table. Each string is only stored once - duplicates

are filtered. Each string is finally replaced with an AST node containing the id (the

position of the string inside of the collection), not the value itself. The callback function

initialize is registered in order to prepare the parser instance before the matching

can start.

45

CHAPTER 5. OMETA

5.3 Summary

OMeta/JS rendered itself to be an elegant solution for the different steps of compilation.

It allows to match not only streams of characters, but also arbitrary host objects. To

provide this functionality, the OMeta language shows some differences compared to

common parsing expression grammars. Additionally, it equips the developer with features

like left-recursion, semantic predicates, semantic actions, grammar inheritance and

foreign rule invocation. We have seen how parametrized rules can be combined with the

rule apply to create higher order rules. Nevertheless, there are some pitfalls like the

difference between host-language and OMeta context. Moreover, the subtle distinction

between the various string-literals is not quite easy and requires some attention.

Due to the fact that setting up OMeta requires the inclusion of many files, we have

concatenated them all into one single file. This allows to work with OMeta grammars

more easily. Yet, the various dependencies between the different files can be improved

futher.

In the next chapter we will see how this can take place and how OMeta/JS can be used

more conveniently.

46

Chapter 6

Extending JavaScript

Contents

6.1 Five Steps to Create a Language Extension 48

6.1.1 First Step: Set up the Environment 49

6.1.2 Second Step: Write an ES5 Grammar 51

6.1.3 Third Step: Specify the Format of the AST 53

6.1.4 Fourth Step: Traverse the AST and Generate Code 56

6.1.5 Fifth Step: Start Extending . 61

6.2 The Architecture . 64

6.2.1 The OMeta Package . 65

6.2.2 The JsonML Package . 66

6.2.3 The ES5 Package . 67

6.2.4 The EJS Package . 70

6.3 The Grammars . 72

6.4 Summary . 74

In the previous chapters we made the following assumption that a) we are extending a

language by compilation rather than introducing new design patterns or using libraries;

b) we want to profit by the flexibilities of implementing the compiler itself in JavaScript;

c) we use a parser generator to benefit from the abstraction a grammar can provide; d) we

concentrate on PEG-parsers since their implementation is a mapping from grammar rules

to code which is simple to understand and e) we choose OMeta/JS as parser generator

because it offers unique extensibility mechanisms such as grammar inheritance.

Building on top of those decisions, in this chapter we are facing the problem of extending

the syntax of JavaScript. For illustration a fictional language called EJS (abbr. for

Extended JS or Example JS) is introduced which forms a superset of JavaScript. The

goal of EJS is to hide some commonly used, verbose design patterns and frequent

inconveniences behind an extended syntax. The language extension may be specified

by an individual programmer or a group of developers in order to create a tailor-made

domain specific language and consequently simplify every-day’s work.

This chapter describes one way of how such an extension can be created within five steps

without going into detailed implementations of the fictional language itself. The resulting

47

CHAPTER 6. EXTENDING JAVASCRIPT

architecture is than presented by inspecting the different packages and grammars

within.

Subsequently, chapter 7 demonstrates by example how an implementation of selected

EJS syntax-elements can take place utilizing the architecture as it is presented.

6.1 Five Steps to Create a Language Extension

The environment in which the language extension will be used can have major influences

on design. Thus the exact context of application needs to be clarified first. Naturally

two environments appear reasonable since we decided to implement the extension in

JavaScript.

Most obviously, the extension could be implemented in a way that makes it possible to

deliver the EJS source-code to the client’s browser where it is compiled and evaluated.

While this seems to be a good approach for development and testing as it responses

immediately to modifications, it also generates a lot of overhead. Firstly, not only the

source-code of the application has to be transferred but also the code for compilation.

Secondly, on every load the compilation process consumes a repeated amount of time

which may not be acceptable in production usage.

Both downsides can be circumvented by compiling the EJS-code once to JavaScript

during deployment and only deliver the resulting JavaScript code to the client. Since

most developers already use some kind of build-process1 to build and deploy their

JavaScript applications (for instance to include unit-testing, script concatenation and

compression into the deployment) the compilation step is expected to be seamlessly

integrated into an existing workflow. For the execution of JavaScript outside of the

browser a console-runtime environment like Node.js is required.

Generally speaking, both environments for compilation and execution, browser and

Node.js, can be targeted at the same time, because we chose JavaScript as language of

implementation. Nevertheless, each individual one demands the architecture to meet

certain criteria. For instance there are different requirements for file-size, performance

and the way modules are linked. The latter approach of separating compile-time from

run-time appears to be more promising since it does not create additional client-side

overhead. In consequence we will concentrate on this strategy. After all, the final

architecture can, with some effort, be translated to work in the browser as well.2

Notes on Node.js

Node.js is a command line interpreter based on the V8 Engine which is originated in the

browser Google Chrome. Additionally it implements large portions of the CommonJS

API-specification. The goal of CommonJS3 is to provide a universal API in order to

establish a standard library for JavaScript, which at the current time does not exist.

Implementors of the various libraries, frameworks and runtime platforms can choose to

1There are different tools existing for specific environments like ant, make, rake, jake or capistrano
2The process of rewriting may be shorted by using a tool called node-browerify, which automatically allows

the use of node-packages within the browser https://github.com/substack/node-browserify.
3 http://www.commonjs.org/

48

https://github.com/substack/node-browserify
http://www.commonjs.org/

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

support different levels of the API in order to make the user code transportable. Most

important, Node.js supports the Modules/1.0 API which allows to encapsulate different

parts of the code in modules. Every file represents a self-contained module. Instead of

linking the modules via the global namespace, the required dependencies have to be

explicitly stated. This is illustrated in the following example using the two modules my

and other.

// file: my.js

var private = "World";

module.exports = {

say_hello: function() { return "Hello " + private }

}

// file: other.js

var my = require(’./my’);

my.say_hello(); //=> "Hello World"

console.log(private) //=> undefined

The separation of modules is not as hermetic as one might expect and thus manipula-

tion of the global namespace is still possible from within a module. For instance an

assignment to a not previously declared variable still is visible in all modules. Hence,

the implementation of modules in Node.js behaves similar to the pseudo code provided

below4:

var m = new Module();

(function(exports, require, module) {

// implementation

})(m.exports, m.require, m);

The loading and initialization of a module is only performed once. Afterwards it is cached

in order to be reused by all subsequent calls to require which request the very same

module.

6.1.1 First Step: Set up the Environment

With the decision to use Node.js as primary target environment, the first step is to

prepare OMeta in order to make it compatible to be used with Node.js. As seen in

the previous section, part of the philosophy of Node.js is to encapsulate the different

components in isolated modules. In chapter 5 we also have seen that OMeta uses

the global environment to link the different required components which leads to many

interdependencies from one file to another. For instance the file lib.js contains a

function objectThatDelegatesTo which behaves similar to the built-in ES5 method

Object.create and is used in almost every other file of the OMeta implementation.

Moreover it also is used by every compiled grammar leading to further dependency

problems. To assure encapsulation and, in the broader sense, prevent interdependencies

not clearly visible between the modules, some alternations have to be carried out:

1. OMeta has to be slightly modified to use the module.exports mechanism as it is

used by Node.js,

4The full implementation of the module-system within Node.js can be seen at https://github.com/joyent/
node/blob/master/lib/module.js

49

https://github.com/joyent/node/blob/master/lib/module.js
https://github.com/joyent/node/blob/master/lib/module.js

CHAPTER 6. EXTENDING JAVASCRIPT

2. The pollution of the global namespace has to be reduced:

(a) No linking through the global namespace - instead use well defined interfaces

and the export/require mechanism,

(b) No introduction of new global objects,

(c) No modification of global objects, such as Object, Array and String.

While there are some forks of OMeta/JS which mostly address the first target to make

OMeta compatible with Node.js, the second one is often left behind, since it requires

the larger effort of completely refactoring OMeta/JS. Nevertheless, after analyzing the

dependencies a total rewrite of OMeta/JS has been performed to reduce the pollution of

the global namespace. In addition, no alternation of existing global objects is required

anymore. In order to achieve this the code has been restructured into two strictly

separated components:

OMeta-Compiler is used to compile OMeta-grammars to JavaScript which than can be

executed using the runtime

OMeta-Base represents the runtime required by the compiler and every other compiled

grammar, since it is always the root of the grammar inheritance chain.

base.js

lib.js

bs-js-compiler.js

bs-ometa-compiler.js

bs-ometa-optimizer.js

bs-ometa-js-compiler.js

Compiled Grammars

(a) Before refactoring

base.js

compiler.js Compiled Grammars

(b) After refactoring

Figure 6.1: Dependencies of the components within OMeta/JS

The dependencies can be seen in figure 6.1. The graph on the left-hand-side (figure

6.1a) shows the usage of global variables before any refactoring has been performed.

Every edge represents one global variable defined by the target and used by the source.

The dotted edges of the compiled grammars symbolize a possible usage, depending on

the underlying grammar. The self-reference indicates that a grammar may use another

compiled grammar as parent grammar or by foreign rule invocation. By compositing

the files needed for compilation into one module many dependencies could simply be

restricted on the single module compiler.js as seen in the graph on the right-hand-side

in figure 6.1b. In a second step a refactoring of the runtime and the compiler allowed to

reduce the dependencies of one compiled grammar to only a) another compiled grammar

or b) the runtime class OMeta. It is noteworthy that the compiler itself can also be seen

as a simple compiled grammar.

While the original version of OMeta/JS added six methods to String and four methods

to Array, it has been accomplished that neither the global object String nor Array had

to be modified.

50

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

Additionally, the file-extension .ojs has been registered with Node.js in order to be

able to compile grammars on the fly and use them as modules. This can be seen in the

following example:

// file: parser.ojs

ometa Parser { ... }

module.exports = Parser

// file: usage.js

require(’ometa’),

var Parser = require(’parser.ojs’);

Parser.matchAll("input string", "start")

The grammar specifying the example-parser is implemented in the file parser.ojs.

Files containing OMeta/JS grammars are treated the same way as Node.js modules.

This applies to both aspects implementation as well as usage. Consequently, it is

possible to use the function require inside of a grammar to load dependencies. Also the

module.exports mechanism can be used to specify the interface to the module. After

loading OMeta/JS it is possible to directly require such a grammar file. The grammar

is instantly being compiled, evaluated and the resulting parser object as specified in

module.exports can be used right away.

6.1.2 Second Step: Write an ES5 Grammar

After successfully setting up OMeta/JS to be used in combination with Node.js the next

logical step is to write a parser which recognizes JavaScript as it is specified in ES5 [5].

To be able to extend JavaScript with new syntax elements in later steps it is necessary to

have a complete compilation life-cycle to build on. By using the mechanisms of grammar

inheritance it is then possible to create new language-elements and insert them into the

existing foundation. The life-cycle starts with the process of parsing, which is described

by a grammar and mostly consists of two phases. At first, the given input has to be

recognized before the single matched parts can be processed in a second step. In this

section we are focusing on the former while in subsequent sections it is discussed how

the intermediate representation is created and further processed.

OMeta/JS already comes with a JavaScript grammar5 which renders itself as a good

starting point, although it does not fully meet our requirements. As such the grammar

should provide

1. full ECMAScript 5 compatibility and

2. a good extensibility; hence it should be

(a) easy to understand and

(b) modular.

The JavaScript parser at least should be able to parse every code which complies with the

ECMAScript 5 specification to guarantee a compatibility to existing JavaScript code. The

5This grammar can be found in the original OMeta/JS implementation under the filename
bs-js-compiler.txt

51

CHAPTER 6. EXTENDING JAVASCRIPT

implementation included in OMeta/JS only covers a subset of JavaScript. For instance the

use of the comma operator (foo, bar) and instantiation of properties (new foo.Bar())

are not possible. Newer syntax elements like property-getters and setters are also not

supported.

Secondly, the ES5 grammar should be written in a way that allows an easy extension in

future steps. To support a programmer in reusing rules it is considered helpful to choose

rule-names akin to the specification, since the developer might be already familiar with

the terminology. Additionally, rules should be expressed as simple as possible. When

designing the grammar it is important to pay attention at modularity and the later reuse

of rules. Changes such as a new statement or operator should only affect a small part

of the grammar. Also the principal of locality should be applicable. Rules that are

dependent should always be localized nearby if possible. This results in clusters of

rules which exhibit certain characteristics of modules. They can be extracted without

affecting other rules and most of the time offer one or more entry rules similar to an

module-interface.

An early attempt of implementation has shown that the most complex rules, both for

initial implementation and further extension, are the ones to allow an almost arbitrary

combination of new-expressions, member-expressions and call-expressions. Figure 6.2

illustrates this problem by providing an extract of the specification (See [5, section 11.2])

directly translated to OMeta.

newExpr = memberExpr
| "new" newExpr,

memberExpr = primExpr
| funcExpr
| memberExpr ’[’ expr ’]’
| memberExpr ’.’ name
| "new" memberExpr ’(’ args ’)’,

callExpr = memberExpr ’(’ args ’)’
| callExpr ’(’ args ’)’
| callExpr ’[’ expr ’]’
| callExpr ’.’ name

Figure 6.2: Ometa grammar representing an extract of the ES5 specification

It gets visible that some redundancy has been introduced by the technical committee to

be able to combine the different postfix operators (i.e. expr[], expr() and expr.name)

and prefix operators (i.e. new expr). At the same time the left-associativity of the

operations is preserved. It becomes clearly visible that an extension based on this

grammar leads to complexity which may be hard to master. The solution presented

here uses OMeta’s parametrized rules to solve both problems. Firstly, it removes the

redundancy and secondly it allows an easy extension without the need to rewrite the

participated rules.

In order to achieve this, we introduce a new type of expression, the access-expression

as it can be seen in figure 6.3. It’s only purpose is to be prefixed (for example by the

new-expression) or to be postfixed. While the prefix extension is the same as in the

specification (except that new only appears once) the postfixes can be specified each in

a separate rule and than be added to accessExpr. Adding a novel syntax for a postfix

operator such as expr<...> to an inheriting grammar can be easily accomplished now:

52

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

// prefixes
newExpr = "new" newExpr

| accessExpr,

// helper to add postfixes
accessExpr = accessExpr:p callExpr(p)

| accessExpr:p memberExpr(p)
| primExpr,

// postfixes
callExpr :p = ’(’ args ’)’,

memberExpr :p = ’[’ expr ’]’
| ’.’ name

Figure 6.3: Restructured version of the ES5 extract

accessExpr = accessExpr:p angleExpr(p)

| ^accessExpr,

angleExpr :p = ’<’ expr ’>’

Passing the base-expression as argument p to the postfix expression has the advantage

of being able to maintain the left-associativity later-on when creating AST-nodes.

Furthermore, when implementing a grammar which may be extended later on it is

important to keep it as simple as possible. In the implementation at hand this simplifi-

cation sometimes had to be performed at the cost of loosing some early errors, since

the grammar allows at a minimum to detect ES5 code. For instance the redundancy of

rules induced by ExpressionNoIn (See [5, section 11.14]) has been removed by allowing

the false positive parsing of for(foo in bar; foo < bar; foo++) {}. It is noteworthy

that it is possible to implement the behavior as specified in [5] by using parametrized

rules with a boolean parameter noIn to indicate whether the in operator is allowed or

not. But again, this adds an undesired and not acceptable layer of complexity.

6.1.3 Third Step: Specify the Format of the AST

Since OMeta/JS supports semantic actions we are able to almost freely specify the format

of the AST. For every rule that has successfully recognized a certain part of the input

it is possible for us to compose the result as it is returned by the rule. The following

example illustrates how the recognition of the input is performed on the left-hand-side

of the grammar, while the processing of the output is placed on the right-hand-side.

stmt = "if" "(" expr:c ")" stmt:t "else" stmt:f -> IfStmt(c, t, f)

If no intermediate steps such as analyzis or optimization are needed, the semantic

actions also could be used to perform a syntax-directed translation (see [1, section 2.3])

which does not necessarily require an abstract syntax tree. This strategy can be applied

for easy transformations only, since it does not allow to analyze the programs structure

in order to create the correct output. For instance it could be difficult to implement an

implicit return for the last statement of a function that way6.

6An example implementation of functions expressions with implicit returns can be found in 7.3 on page 82

53

CHAPTER 6. EXTENDING JAVASCRIPT

Hence, in order to support an arbitrary count of translations an AST is used as inter-

mediate representation. As already seen in section 2.3 on page 12, the AST is mostly

traversed for two purposes. Firstly to statically analyze the structure of a program and

secondly to modify it. Furthermore, generating code can be seen as special modification

of the AST which discards the AST structure to return the final result. The format of the

AST is characterized by a) the structure of the data and b) the naming of the different

types of nodes and their interface.

For the most part, the former affects only the implementation of tree-walkers and should

be transparent to developers. Whereas the second point is most important for grammar

writing developers, since they have to create and traverse the AST and therefore always

have to be aware of the node-naming. Figure 6.4 illustrates how the format of the AST

can serve as an protocol-like interface between the different stages of the compilation.

Parser Translator GeneratorTranslator

Interface = AST

Figure 6.4: AST-format as interfaces between compilation stages

The data-structure of the AST has to be consistent over the different stages of compilation.

The naming in contrast can vary, since each compilation step may add new node-types or

remove node-types to concentrate on a smaller set. Each stage requires the AST format

to meet certain criteria. On the one hand the nodes, from which the parser constructs

the AST, should be created easily without much redundancy of code. On the other hand

traversal and modification of the tree should be as simple as possible.

In the remainder three different data-structures will be compared. Afterwards, the

traversal of the AST is discussed to finally explain how ASTs are assembled from nodes

and translated back to code.

// original source code
var foo = 4;

// S-Expression AST
["VarDecl", "var"
["VarBinding", "foo",
["Number", 4]]

// Object-Notation AST
{ type: "VarDecl", kind: "var", declarations: [
{ type: "VarBinding", id: "foo", init:
{ type: "Number", value: 4 }}]}

// JsonML AST
["VarDecl", { kind: "var" },
["VarBinding", { id: "foo" },
["Number", { value: 4 }]]]

Figure 6.5: Example of three AST-formats representing var foo = 4

To allow serialization and a seamless integration into JavaScript programs7, all three

AST-formats as seen in figure 6.5 are formatted in JSON8. For reasons of readability

7This also includes OMeta/JS grammars, since JavaScript code can be embedded in every grammar
8For details on JSON see RFC 4627, July 2006 (http://www.ietf.org/rfc/rfc4627)

54

http://www.ietf.org/rfc/rfc4627

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

property-names are not quoted as strings in this example.

As it can be seen, the S-Expression notation is the most easy to read and to write

manually, since it only consists of nested arrays. All information of a node is simply

stored as entry inside of an array. The first element always specifies the type of a node,

whereas all following elements are considered to be child-nodes. This data-structure is

used within the OMeta/JS implementation and is widely known, since Lisp programs are

described that way. Yet the traversal of such an AST in OMeta/JS can be troublesome.

One has to exactly know which elements of the array are child-nodes and thus need to

be traversed recursively and which are just simple information and hence don’t need to

be traversed. In addition, the position of an object within the node often also implies

semantic information about the relation of the object to the node. For example var

node = [“IfStmt”, true, false] is not the same as var node = [“IfStmt”, false,

true], if we assume that the first child represents the test-expression (node[1]) and

the second one the true-statement (node[2]) which is evaluated if the test is truthy.

Consequently, adding new information to a node of this type always results in also

adapting all translators it is used within. This also makes it difficult to add meta-

information like the position in the source code, whitespace information or comments.

S-Expressions Object-Notation JsonML

Easy to read and write 3 7 3

No implicit semantics 7 3 3

Easy access to information 7 3 3

Easy to traverse 3 7 3

Can contain meta-information 7 3 3

Table 6.1: Comparison of the different AST data formats

The Object-Notation in this example is inspired by the SpiderMonkey Parser API [16]

which describes interfaces to the different node-types as they are created by the Spi-

derMonkey JavaScript engine. The API is build into Mozilla Firefox 7.0 and can be

used to inspect and manipulate JavaScript programs. In contrast to S-Expressions the

object-notation allows to directly access certain children by name. For example applying

node.test on an if-statement will return the associated test-expression. The position of

child-nodes does not imply semantic informations, since this is explicitly expressed as

property name. As a result this data-structure appears to be more robust to changes and

meta information can be added and removed without affecting the remaining behavior.

Nevertheless, there is one big downside of this structure: OMeta/JS currently does not

support a way to elegantly match generic objects and their properties. Details of this

problem and a possible solution is presented in section B.3. Since object pattern match-

ing is not yet implemented, the object-notation is still considered highly problematic. In

addition it can be difficult to write a correct syntax tree by hand as well as to read a

complex AST.

55

CHAPTER 6. EXTENDING JAVASCRIPT

The JsonML format9 has been developed to convert any XML into JSON-format and vice

versa without losses. It builds on the same foundation as S-Expression, but adds an

optional attributes object as first child. This object can be used to store any values, which

are not considered to be AST-nodes themselves. This small structural change makes it a

lot easier to automatically traverse the children of a node since every child has to be an

AST-node. In addition, all attributes can be accessed by name and therefore can be added

or modified with the same simplicity as nodes of the Object-Notation. Depending on the

magnitude of used attributes, the readability can be ranked between S-Expressions and

Object-Notation. The JsonML format shares the same problems with S-Expressions when

it comes to semantic assumptions derived from an element’s position. Nevertheless,

those problems occur a little less often, since some information can be extracted to

explicitly named attributes.

In summary, the JsonML format renders itself to be a reasonable compromise of the two

other alternatives featuring the individual strengths and diminishing their shortcomings.

On top, this data-structure appears to be the most easy to traverse, since it distinguishes

AST-nodes and other attributes in a well-defined manner. These advantages make JsonML

the natural AST-format for our requirements.

6.1.4 Fourth Step: Traverse the AST and Generate Code

Having chosen JsonML as the data-structure, the next decision to make is how the AST

should be traversed. When implementing a translation there basically are two different

strategies. The traversal of the tree can either be achieved by

1. using a grammar or

2. implementing a standalone walker utilizing the visitor pattern.

While the first approach can be implemented in OMeta itself, the second one requires a

new piece of software, the walker or visitor. Both strategies have in common that they

require at least one rule to be implemented for each individual node-type which needs to

be translated.

After an experimental implementation of both approaches I decided to pursue the first

one. It appears to be more consequent to implement both phases parsing and translation

in OMeta instead of making use of a totally different tool-chain for translation than for

parsing. Additionally, the complete ES5Translator implementation written in OMeta is

just about 60 lines of code, whereas the visitor based implementation was about three

times that size.

There are two reasons for the increased complexity of the visitor based implementation.

Firstly, a translator written in OMeta allows to specify not only the node-type, but any

arbitrary pattern that can be matched before a certain semantic action is performed.

Using imperative programming some effort is needed to mimic these pattern matching

capabilities. For example in order to differentiate between the two structures

["TryStmt", {}, try_block, catch_expr, catch_block, finally_block?]

9Further information on JsonML can be found at http://jsonml.org/

56

http://jsonml.org/

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

and

["TryStmt", {}, try_block, finally_block]

some conditional branches and testing conditions have to be written by hand which are

otherwise generated automatically from the grammar. This causes the grammar-based

approach to appear more structured at first sight, while the visitor implementation

quickly becomes a diffuse mixture of matching and translation inside of the different

rule implementations.

Secondly, as seen in chapter 3 the layer of abstraction introduced by a grammar makes it

more easy for the developer to instantly recognize important semantics which otherwise

are hidden under the verbose syntax necessary in a manual implementation10. Hence,

redundant code can be reduced at a great level by automatically generating it from a

grammar and consequently making both reading and writing the code less of a burden.

Nevertheless, in both approaches it is possible for one translator to inherit behavior

from another one. Written in OMeta, the translator can use the mechanism of grammar

inheritance. The rules of a visitor implementation in turn can be reused by utilizing

JavaScript’s prototypal inheritance.

The OMeta/JS Translator

In the following we will see how the implementation of an OMeta translator can take

place. Each translation of an abstract syntax tree consists of the four steps a) Find

the right translation rule for the current node; b) traverse the children recursively;

c) combine the results with additional information like node-attributes or context and

finally d) produce a result and return it. The implementation of the translator which

is presented here is mainly inspired by the original translator as it is delivered with

OMeta/JS. Nevertheless, some changes had to be applied in order to make it suitable.

Firstly, the compatibility with JsonML had to be achieved, since this has been chosen as

data structure of the AST. Secondly, all node types as they are created by the ES5Parser

have to be recognized and successfully translated.

In order to find the appropriate rule to apply for the current node the grammar uses the

node’s type string. According to the JsonML format the type string always can be found

as first element of the array which represents the AST-node. Considering the example-

node [“VarDecl”, { kind: “var”}, ...] the correct rule to apply is VarDecl. The

second entry contains the attribute object which does not need to be translated. All

following elements are considered to be child-nodes and can explicitly be traversed by

applying the rule walk to each child. Likewise, if many child-nodes are expected, walk+

can be called which results in an array containing the traversed children. Based on this

insights an intuitive implementation to translate the AST (as seen in figure 6.5) back to

JavaScript code can be found in figure 6.6.

This way of implementation has the major downside of being completely aware of the

underlying data structure. Additionally only one rule is specified which makes the gram-

mar difficult to extend in future steps. To solve both problems the final implementation

makes use of a parent JsonMLWalker-grammar which brings along all basic functionality

10Interesting thoughts about problem solving by the means of abstraction can be found in [23]

57

CHAPTER 6. EXTENDING JAVASCRIPT

ometa Translator {
walk = [’Number’ :attr] -> attr.value

| [’VarDecl’ :attr walk+:bindings] -> ["var ", bindings.join(’, ’)].join(’’)
| [’VarBinding’ :attr walk:init] -> [attr.name, "=",init].join(’’)
| [’VarBinding’ :attr] -> attr.name

}

Figure 6.6: Implementation of a translator for variable declarations based on OMeta/JS pattern
matching facilities

to traverse the AST-nodes. In theory, this makes it more easy to exchange the underlying

data-structure by just inheriting from another generic translator, although this may only

work for array-based data-structures such as S-Expressions and JsonML. This limita-

tion derives from the fact that the matching of the node-structure and traversal of the

children is still performed by explicitly pattern matching on the array.

ometa Translator <: JsonMLWalker {
Number :n = empty -> n.value(),
VarDecl :n = walk+:bindings -> ["var ", bindings.join(’, ’)].join(’’),
VarBinding :n = walk:init -> [n.name(), "=",init].join(’’)

| empty -> n.name()
}
Translator.force_rules = true

Figure 6.7: Implementation of a translator for variable declarations utilizing a parent
JsonMLWalker-grammar

The grammar as seen in figure 6.6 can be rewritten to make use of the JsonMLWalker.

The result of this refactoring can be seen in figure 6.7 with n not being the attribute-object

(since the grammar is decoupled from JsonML) but the node object itself. The inherited

rule walk still is the starting point for this grammar. The configuration force_rules can

be used to define how to handle the traversal of nodes without a specified rule. If set to

false, the node is left untranslated but it’s child-nodes are traversed recursively. If set

to true, an error is thrown.

We may notice that the code is visually separated in three columns. The first one

shows the node-types, the second one represents the structure of each node (and also

recursively specifies the traversal of the children by applying walk) and the third one

indicates the transformations to perform on the nodes.

Furthermore, the node implements an interface to access it’s attributes (for instance

n.value()) and some additional methods. This methods can be used within semantic

predicates to further confine the matching of the node such as ?n.is(’kind’, ’var’).

An implementation comparable to the one above but written in JavaScript and based on

the visitor pattern can be found in appendix A.2.

Node Constructors

To simplify the process of translation all nodes have the same structure regardless if

there are attributes for a special type of nodes or not. The structure is always as follows:

[node-type, attributes, children ...]

58

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

Nodes with the same structure and behavior are grouped together as node-types. They

may be compared to classes as known from classical object orientation. Instances of a

node-type are created by node constructors11, even though the data structure is simple

enough to be written by hand. The use of constructors offers two advantages:

1. The underlying data-structure may be changed without the need to refactor the

parsers and translators.

2. Mistypings such as [“VarDeccl”, {}, ...] are reported as early errors, since

VarDeccl(...) is not a function.

The constructors expect a set of parameters describing the configuration of the node to

be assembled. By default each of the given arguments is appended as individual child to

the node. This behavior can be customized as it is demonstrated in the following.

The node constructors themselves are created by a higher order function which can be

compared to a factory or a meta-constructor. In order to create a node constructor two

obligatory and one optional parameter can be specified as seen in figure 6.8.

function NodeType(node-type, attributes, constructor?)

Figure 6.8: Signature of the node constructor factory

The first parameter is expected to be a string specifying the type of nodes to create

the constructor for. The second parameter has to be an object and describes the set of

attributes and their default values that every node of this type should be equipped with.

For every given attribute a combined getter and setter method is added to the node-

instances. These attribute-accessors can be used to access and manipulate the attributes

of the node without having to be aware of the attributes-object or the data-structure. The

last and optional parameter can be used to specify a callback which is invoked right after

the construction of a node has been finished and the attribute-methods have been added.

The callback itself receives all arguments that are supplied during the constructor call.

The binding of this is set to the newly created node. It can be used to override the

default behavior and explicitly process the arguments in order to add the child-nodes by

hand. For example a constructor for number literals nodes can be created as seen in

figure 6.9 on the following page.

In this example this.value is the generated accessor method for the attribute value.

Likewise, using the method type the type of the number-node which by default has the

value “decimal” can be changed. The callback function is used to set the value-attribute

instead of appending the arguments as child-nodes.

Additional to the attribute accessors every node is equipped with methods which can

be used in semantic predicates to refine the process of matching. Some of the most

important methods can be found in table 6.2 on the next page.

Utilizing this methods the grammar of figure 6.7 can be enhanced to differentiate

between hexadecimal and decimal numbers. The rewritten rule Number can be seen in

figure 6.10 on page 61.

11The SpiderMonkey API offers almost the same concept but calls it “Builder objects” [16]

59

CHAPTER 6. EXTENDING JAVASCRIPT

var Number = NodeType("NumberLiteral", {
type: "decimal",
value: undefined

}, function(value) {
this.value(value);

});

var number_7 = Number(7);
console.log(number_7); //=> ["NumberLiteral", { type: "decimal", value: 7 }]
console.log(number_7.type()); //=> "decimal"
console.log(number_7.value()); //=> 7

number_7.value(42);
console.log(number_7.value()) //=> 42

var number_fa = Number(0xfa).type(’hex’)
console.log(number_fa); //=> ["NumberLiteral", { type: "hex", value: 250 }]

Figure 6.9: Creating a constructor for nodes with the type Number

n.hasType(type) Checks whether node n has the provided type.

n.has(attr) Returns true if the given attribute can be found in
node n

n.is(attr, val) Compares the value of attr in n with the one pro-
vided

n.not(attr, val) Same as n.is but negates the result

Table 6.2: Excerpt of methods which are added to each node

Limitations of the AST

The implementation of the AST and it’s traversal as presented here isn’t flawless and

comes with certain limitations. For instance the process of matching a subtree and the

translation of child-nodes are unified. This makes a traversal of the child-nodes difficult

when only trying to match subtrees or collect information. Especially the latter can

be achieved more easily by using a special query language like the one provided by

jQuery in order to find elements in the DOM. For example it may be quite tedious to

write a grammar that collects all variable declarations for each function but not the

ones of nested functions. The same task can be achieved very easily using a jQuery like

approach:

$(’VarDecl’).each(function(decl) { decl.parent(’Function’).add(decl) })

As a future work it is possible that these querying capabilities might be added as methods

to the nodes. In consequence they could be used inside of semantic actions and semantic

predicates and therefore combine the strength of both abstractions: recursive grammars

and iterative filters.

60

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

Number :n = ?n.is(’type’, ’hex’) -> ("0x" + n.value().toString(16))
| empty -> n.value()

Figure 6.10: Using node-methods to refine the matching of rule Number

Generating Code

The JsonMLWalker as it is presented above can be used to translate one abstract syntax

tree into another. It also can be used to generate JavaScript code - the target language of

our compilation process. The code in turn can be executed by any JavaScript interpreter

or browser. Of course, parsing JavaScript to receive an AST and translating it back to the

same code does not make any sense if there aren’t intermediate steps like optimization

or compression. But since we are planning for extension, this step is necessary to take.

Figure 6.7 already illustrated partially how the generation of code can be achieved.

Instead of modifying the nodes or creating new ones, semantic actions are used to

generate a string value for each node. The semantic action is applied after the child

nodes have been translated. Therefore, every node just has to merge the parts which are

recursively produced by the child nodes. Finally, the root node can return the complete

code which should be semantically the same as the input. For reasons of simplicity

we accept that input and output are not identical down to a single character. This

differences are the result of lost information like whitespaces and comments which could

be preserved with some additional effort.

6.1.5 Fifth Step: Start Extending

In the previous steps everything has been prearranged to finally extend JavaScript. To

summarize, a JavaScript parser has been written that makes use of node constructors in

order to create an abstract syntax tree with JsonML as the underlying data structure.

Afterwards, the design of a tree-visitor has been discussed which takes the AST as input

and translates it back to JavaScript code. With this utilities at hand it is now possible for

us to put together the pieces and start extending the syntactical frontend of JavaScript.

In general, there are four ways to extend the language. Each characterized by both

increasing complexity and power of expressiveness.

The first and easiest way to implement an extension is to use syntax directed translations

as seen in figure 6.11.

CodeEJS EJSParser / Translator CodeES5

ES5EJS

Figure 6.11: Extending the language using syntax directed translations

A necessary prerequisite is that the ES5Parser does not create an AST as output but

directly translates the code back into a string. This causes the parser to be a translator

(and code generator) at the same time. An extension could inherit from this parser

61

CHAPTER 6. EXTENDING JAVASCRIPT

grammar and add new custom rules which themselves have to produce valid JavaScript

code. Following this approach, a transformation from EJS to JavaScript can be performed

in one single step which may be denoted as CodeEJS → CodeES5. Despite of it’s

simplicity this strategy is not applicable due to our decision to use an AST as intermediate

representation.

As discussed above, the usage of an AST allows us to add a wide range of optimization

and transformation steps in between before the code is translated back to JavaScript.

Additionally, with an intermediate representation it gets possible to realize more complex

extensions since the code can be analyzed more easily.

The second approach embraces this concept as seen in figure 6.12. For notational

convenience we may also write CodeEJS → ASTES5 → CodeES5.

CodeEJS EJSParser CodeES5

EJS
Parser

ES5
Parser

ASTES5

ES5Translator

ES5
Transl.

Figure 6.12: Extending the language by creating an ES5 AST

Following this approach, the EJSParser still inherits from ES5Parser but now parses

the input string and reduces all syntactic sugar to create a valid ASTES5. This abstract

syntax tree can be further optimized and finally translated to code by the already existing

ES5Translator. In consequence, the already existing tool-chain based on the ASTES5

can be reused. The flexibility of this two step process is sufficient to be able to create

most extensions.

Nevertheless, it is possible to introduce a separate AST format for the extended language.

The new AST format ASTEJS does not differ in structure but adds new node types for

novel syntax elements, hence the different subscript. Using a separate format for

the syntax tree defers the responsibility of converting EJS to ES5 from the parser to

the translator. The parser only has to recognize the new syntax but does not need to

“understand” it’s semantics. The second task of the extension, that is converting the tree

to valid JavaScript, is now part of the translator. Figure 6.13 shows the third way to

extend a language, which we may also refer to as CodeEJS → ASTEJS → CodeES5.

CodeEJS EJSParser CodeES5

EJS
Parser

ES5
Parser

ASTEJS

EJSTranslator

EJS
Transl.

ES5
Transl.

Figure 6.13: Extending the language by creating an intermediate ASTEJS format

A new translator, called EJSTranslator inherits from ES5Translator in order to directly

generate the string representation. With this approach we gain the possibility of analyz-

ing the high level AST (including the new syntactic elements). This can be rated positive,

62

6.1. FIVE STEPS TO CREATE A LANGUAGE EXTENSION

since it is always valuable for a later analysis to preserve as much high level information

as possible. At the same time, this approach is similar to the first one, since we loose the

compatibility to tools which are comfortable with theASTES5 format.

The most powerful but also most the complex approach takes the concept of deferring

the conversion to the translator one step further. The solution presented in figure 6.14

is similar to the second approach in a way that it allows the complete reuse of the ES5

backend. To achieve this an additional step of translation has to be introduced which

converts all EJS node-types into appropriate ES5 subtrees. This last approach further is

referred to as CodeEJS → ASTEJS → ASTES5 → CodeES5.

CodeEJS EJSParser

EJS
Parser

ES5
Parser

ASTEJS

EJSTranslator

EJS
Transl.

CodeES5

ASTES5

ES5Translator

ES5
Transl.

Figure 6.14: Extending the language by additionally translating ASTEJS to ASTES5

As already said, the two step process most of the times is sufficient. Since we are

only adding “syntactic sugar” to the language new elements can simply be mapped to

JavaScript. Nevertheless, sometimes it is more convenient to create new node types and

delay the translation to a dedicated step. This consequently separates the recognition

of code from the further processing by the price of an additional translation-pass. Also

analysis can take place at two different levels (ASTEJS and ASTES5). As a result,

the approaches two and four are supported by the architecture and a programmer

implementing an extension may decide which one to use.

Example Extension

Let’s place ourselves in the situation that we want to implement a web-server based

on an event loop (if we are more attracted by games we may also implement a game

loop). In JavaScript, as in most languages based on C-style syntax we may utilize either

of the statements for(;;){...} (pronounced “for ever”) or while(true){...}. Both

statements will repeatedly execute the statements included in their bodies until the end

of all days. However, both statements do not directly express what they are supposed

to do - create an endless loop. As a consequence we will add a small extension to the

JavaScript language and add a loop-statement.

Since this extension does not require further steps of analysis or an extensive translation

process we will follow the two step extension approach. Hence, the first thing to do is to

create a new parser which inherits from ES5Parser as seen in figure 6.15.

The extension can be broken down to the steps a) extend the existing rule keyword

and add loop as a new keyword; b) create a new rule loop which matches the loop

keyword and any subsequent statement; c) use a semantic action to create a new valid

ES5 AST-node and thereby desugar the loop-statement into for(;;) to finally d) extend

the rule stmt to register loop as novel statement.

The resulting parser can now be used in combination with the ES5Translator to compile

any code containing the loop-statement.

63

CHAPTER 6. EXTENDING JAVASCRIPT

ometa EJSParser <: ES5Parser {
keyword = ‘‘loop’’ | ^keyword,
loop = "loop" stmt:s -> ForStmt(undefined, undefined, undefined, s),
stmt = loop | ^stmt

}

Figure 6.15: Adding loop-statements to JavaScript

var es5_tree = ejs.parse("loop { process_events(); }");
var result = es5.translate(es5_tree);
console.log(result); //=> "for(;;) { process_events(); }"

Figure 6.16: Using the EJSParser to make use of the new loop-statement

The usage can be seen in figure 6.16 with the parser being part of the ejs-package and

the translator being included in the es5-package.

6.2 The Architecture

In the previous section we have seen how an extension to JavaScript can be created by

following five steps. This section will give some more information about the architecture

resulting from that process.

To gain an impression of the architecture the first view that will be discussed is the

“package view”. Following the principle of separation of concerns all modules, whether

they are grammars or not, are grouped into packages. Each one defines a clean in-

terface. This encapsulation ensures a better maintenance and allows changes of the

implementation within a package without affecting other packages.

ometa-package

CompilerOMeta Base
(Runtime)

jsonml-package

Walker
Factory

Node Type

es5-package

TranslatorParser Node Types

ejs-package

TranslatorParser Node Types

Scaffold that can be
used to implement in-
dividual extensions

Figure 6.17: Packages from the architectural point-of-view

The packages can be grouped into three levels of implementation as seen in figure

6.17. The first level consists of the ometa-package and the jsonml-package. Those two

packages can be distributed independently of the rest and may be used as foundation

for every compiler-project that is based on OMeta/JS with JsonML as data structure.

Moreover, the ometa-package also can be used standalone if no pre-configured JsonML-

translator or node-constructors are necessary.

64

6.2. THE ARCHITECTURE

The second level is the result of “Second Step: Write an ES5 Grammar” and “Fourth

Step: Traverse the AST and Generate Code”. The es5-package depends on the first level

in many ways, which can be seen more detailed in the following subsection 6.3. Hence it

only can be used in combination with both packages ometa and jsonml.

The extension of JavaScript finally starts with the third level containing the ejs-package.

The package builds on es5 and contains the results from “Fifth Step: Start Extending” in

order to provide language extensions. It is the third level at which a developer starts

implementing a new language-extension. The ejs-package presented here only serves as

example and is not necessarily part of an individual implementation.

6.2.1 The OMeta Package

The ometa-package basically consists of two components. First, a compiler which is

needed to compile an OMeta/JS grammar to JavaScript. The second component is the

OMeta base class every OMeta parser inherits from. The base is sometimes also referred

to as “OMeta-runtime”, since every OMeta parser requires it at runtime to be executed.

Method Description

.compile(grammar) Expects the arguments grammar to be a string, describing
an OMeta/JS grammar and returns compiled JavaScript
code

.run(compiled-source) Executes code as it is returned by .compile and returns
what has been specified as module.exports

Table 6.3: Interface of the ometa-package

// All required dependencies
var ParentGrammar = require(’./parent_grammar.ojs’),

tools = require(’tools’),
...;

// Implementation of the grammar itself
ometa Grammar <: ParentGrammar {
...

}

// Specification of the interface
module.exports = {
parse: function(input) { return Grammar.matchAll(input, ’start’); }

}

Figure 6.18: Usage pattern of standalone grammar modules

The ometa-package presents an interface which can be used by all other packages to

compile and evaluate OMeta/JS grammars (Table 6.3). In addition, the .ojs extension

is registered with Node.js. This allows to use OMeta/JS grammar-files the same way as

common Node.js packages (Also see subsection 6.1.1). To avoid multiple, redundant

compilation passes over the same grammar-module the compiled results are cached

in temporary files. The standalone usage of grammar-modules keeps the amount of

files within a package at a minimum, since no additional file is required to control the

65

CHAPTER 6. EXTENDING JAVASCRIPT

life-cycle of a parser-instance. Instead, akin to the usual implementation of a Node.js

module, the dependencies and interfaces to a grammar are expressed in the grammar

itself. In consequence, two or more grammars can be grouped within one module and

therefore be encapsulated behind one specified interface. During the implementation of

the framework the pattern emerged as it can be seen in figure 6.18. It is used within all

standalone grammars.

One may notice that there is no way for a grammar which is placed inside of another

module to inherit from Grammar because only the method parse is included in the

interface. To support an extension it is possible to rewrite the interface definition as

follows.

Grammar.parse = function(input) { return Grammar.matchAll(input, ’start’); }

module.exports = Grammar

6.2.2 The JsonML Package

The second package that can be found in the first level is the jsonml-package. The

package provides all functionality that is required to work with an AST based on the

JsonML data-structure.

Method / Property Description

.factory(type, attr, constr?) Factory function to create constructor functions,
which can be used to instantiate the respective
node-type.

.walker Instance of the walker from which an OMeta/JS
grammar might inherit.

Table 6.4: Interface of the jsonml-package

Firstly, it contains a factory which can be used to create node-constructors for each

node type. These constructors in turn are mostly used by parsers in order to create

node-instances and thereby build the abstract syntax tree.

Secondly, the package provides a walker-implementation that is written in OMeta/JS.

All subsequent translators inherit from this grammar in order to reuse the traversal

functionality provided by the walker. Obviously, the jsonml-package depends on the

ometa-package in a way that it uses the ojs-extension mechanism described above.

Details about the walker implementation and AST design have been discussed in 6.1.4.

The following example illustrates the usage of the jsonml-package in order to get an

overview about the features as they are contributed by the package.

The first part of the example (figure 6.19) shows how node constructors are created by

the factory before a parser can make use of them within semantic actions.

The second part of the example as seen in figure 6.20 illustrates a translator that is able

to translate abstract syntax trees created by the above parser. To traverse through every

single nodes of the AST the rule walk is provided by the parent grammar JsonMLWalker.

66

6.2. THE ARCHITECTURE

// parser.ojs
var Number = Factory("Number", { value: undefined }, function(digits) {
this.value(parseInt(digits))

})
var ArrayExpr = Factory("ArrayExpr", {}, function(elements) {
this.appendAll(elements);

});

ometa Parser {
primaryExpr = number | arrayExpr,
number = <digit+>:ds -> Number(ds),
arrayExpr = "[" listOf("primaryExpr", ","):els "]" -> ArrayExpr(els)

}

Figure 6.19: Example of a parser that utilizes the jsonml-package

// translator.ojs
ometa Translator <: JsonMLWalker {
Number :n = empty -> n.value().toString(),
ArrayExpr :n = walk*:els -> ("[" + els.join(’,’) + "]")

}

Figure 6.20: Continuation of 6.19. Translator using the jsonml-package

We also may notice that the translator makes use of the method value(). This method

is added automatically by the node-constructor, since it is part of the attribute-object

provided to the factory (See definition of Number in figure 6.19).

6.2.3 The ES5 Package

Placed on top of the first level the es5-package provides everything that is needed to

successfully parse JavaScript code, create an intermediate representation and trans-

late it back to code. The package consists of the two grammar-modules ES5Parser

and ES5Translator as well as one auxiliary module that contains all node-constructor

definitions.

The package can be used in four ways. Firstly, the language which is recognized by the

parser may be extended. This can be achieved by adding new syntactic constructs to the

parser and reusing the translator (This is how the example language EJS is implemented).

Secondly, a pretty printer could be created by re-implementing the translator. Thirdly,

intermediate translations may be added in order to optimize or compress the source

code. Finally, the parser may be reused to generate the abstract syntax tree of a piece of

source code in order to statically analyze the code. This option may be used for instance

to provide code assistance or to verify the code with tools like “linters”12.

In order to allow grammar inheritance the interface as seen in table 6.5 offers access to

both grammar objects. The same applies to the collection of node constructors, which

may be extended in further steps. The naming of the node constructors is inspired

mainly by Spidermonkey’s Parser-API [16] but it is not identical. Some names have been

shortened and a naming convention for expressions and statements has been introduced:

All expressions are postfixed with Expr while all statements end with Stmt.

12For example JSLint tries to discourage the use of so called anti-patterns (http://www.jslint.com)

67

http://www.jslint.com

CHAPTER 6. EXTENDING JAVASCRIPT

Method / Property Description

.parse(code) Utilizes the ES5Parser to parse the given code and outputs an
AST in JsonML format

.translate(ast) Takes an AST structued as JsonML and translates it back to
JavaScript

.compile(code) Combines the functions .parse() and .translate() to perform
a full compilation cycle on code. The result should be
semantically equivalent.

.parser Instance of the ES5Parser OMeta-module

.translator Instance of the ES5Translator which inherits from
JsonMLWalker

.nodes Collection of all node-constructors which have been created
with the help of the JsonML factory.

Table 6.5: Interface of the es5-package

Additionally, the interface provides three methods that can be used to control the

full compilation life-cycle. The following example illustrates the usage of parse and

translate:

var tree = es5.parse("var foo = 4"); //=> ["Program", {}, ["VarDeclStmt", ...]]

es5.translate(tree); //=> "var foo=4"

Testing

The developing process of the es5-package has been accompanied by extensive testing.

To achieve a full coverage of the language specified by Ecma International [5] thousands

of tests are necessary. Three approaches have been followed in order to avoid the

time-consuming task of manually writing these tests but at the same time guarantee a

high quality of code.

Firstly, an own test-suite has been implemented which covers most of the basic operations

and all errors, that occurred during development. The set of this tests is small and

cannot guarantee a correct compilation of all JavaScript programs.

While a full coverage of all language elements is appreciated, in practice only a subset is

used by most of the programmers. In conclusion, successfully compiling the most used

JavaScript libraries can paint a picture about how the compiler will work in a practical

context. A set of six JavaScript has been parsed, translated and finally compared to the

original source. To avoid differences in indentation, whitespaces and missing comments

the source as well as the final result have been compiled with the closure-compiler13

REST-API. To only normalize whitespaces the closure compiler has been configured to

“Whitespaces only” and “Pretty print”.

13http://closure-compiler.appspot.com/home

68

http://closure-compiler.appspot.com/home

6.2. THE ARCHITECTURE

Library Version Linecount Success

Dojo 1.7.1 15.545 3

ExtJs 4.0.7 22.381 3

jQuery 1.7.1 9.266 3

mootools 1.4.3 6.371 3

prototype 1.7.0 6.082 3

YUI 3.0.5 10.245 3

Table 6.6: Tested Libraries

The results of the tests can be seen in table 6.6. All libraries have been successfully

compiled by the es5-package and the results of the compilation did not differ from

the source. Nevertheless, this round-trip testing does not allow conclusions about the

correctness of the intermediate AST. Errors in both components parser and translator

may be evened out in the result. At the same time errors in the closure-compiler

implementation can have a large impact on the results of the tests further decreasing the

validity of the tests. Despite the disadvantages, some conclusions about the correctness

can be drawn from the fact that the parsing does not throw errors and therefore the

input has been fully recognized.

Chapter Without Compilation Compiled Total

07 Lexical Conventions 706 504 716

08 Types 123 103 124

09 Type Conversion and Testing 128 87 128

10 Executable Code and Execution
Contexts

183 163 184

11 Expressions 1.306 909 1.310

12 Statements 519 431 525

13 Function Definitions 199 174 200

14 Program 24 20 24

15 Built-in ECMAScript Objects 7.288 6.363 7.970

Total 10.476 8.754 11.181

Table 6.7: Results of applying the ECMAScript test suite

To enhance the spectrum of tests a third approach utilizes the tests provided by the

ECMAScript committee14. The tests are categorized into chapters akin to the outline

14A online version of the tests can be found at http://test262.ecmascript.org/ - the source is allocated

69

http://test262.ecmascript.org/

CHAPTER 6. EXTENDING JAVASCRIPT

of the specification. This comprehensive test suite can be used to test any JavaScript

engine for correct implementation of the ECMAScript 262 standard. The test suite

could be reused by performing a compilation step before running the tests. Hence,

each JavaScript file containing tests is parsed and translated back to code before it

is interpreted by the engine. Again, the validity of the tests highly depends on the

JavaScript engine, the wrapper and the reliability of the testing suite. Errors in the

construction of the syntax tree still cannot be found that way if the tree is correctly

translated back to code. To compare the effects of the compilation-pass the tests have

been performed twice. The first time without the additional compilation and the second

time with the compilation. The results as seen in table 6.7 show that only about 84%

of the tests that have passed the first stage also have been tested successfully after

compilation. On the one hand this illustrates the need for improvement. On the other

hand, considering the more practical approach of compiling real-world libraries the

es5-package seems to be compatible for most applications.

6.2.4 The EJS Package

The fourth level, consisting of the ejs-package, is where the extension of JavaScript takes

place. It only serves as a placeholder for any language-extension that builds on the

es5-package. At the same time a skeleton of all necessary files is provided in order to

allow an easy start. The extension than can be performed by filling the skeleton with

implementation.

Method / Property Description

.parse(code) Parses the extended JavaScript code and creates an
intermediate AST containing EJS-specific node-types.

.translate(ejs-ast) Translates the given AST to be compatible to the translation
of es5-package. Resolves all EJS-specific node-types and
returns the resulting AST.

.compile(code) Combines the methods parse, translate as well as
es5.translate to compile extended JavaScript code to
valid JavaScript.

.parser Instance of the EJSParser which inherits from ES5Parser

.translator Instance of the EJSTranslator

.nodes Collection of all node-constructors required by EJS, also
includes all es5-nodes

Table 6.8: Interface of the ejs-package

The final extension can be used in two ways. On the one hand the interface as seen

in table 6.8 offers methods to access the basic functionality of the package. The most

important one is compile which encapsulates the complete compilation process behind

one simple method invocation. Incorporating the example extension from 6.1.5 a call to

compile could look like

at http://hg.ecmascript.org/tests/test262/

70

http://hg.ecmascript.org/tests/test262/

6.2. THE ARCHITECTURE

ejs.compile("loop { do_it() }"); //=> "for(;;) { do_it() }"

which “desugars” the novel loop-statement to a regular for-statement.

On the other hand, the ejs-extension has been registered with Node.js. Every file with

this extension is automatically compiled before it is evaluated as regular module. This

allows to use modules written in EJS the same way as common JavaScript modules within

Node.js. The following example illustrates the use of a module server.ejs implemented

in the extended language

exports.start = function() {

loop { handle_connections() }

}

from within another module index.js.

var server = require(’server.ejs’)

server.start();

In the remainder of this section we will take a look at how the scaffold which is included

in the ejs-package looks like. Chapter 7 on page 75 provides further examples how

actual extensions can be implemented.

The first component addresses the fact that the extended language has to be recognized

by the parser. The grammar-module EJSParser inherits from the parser originated in

the es5-package for this very purpose. The contents of the scaffolded grammar-module

can be seen in figure 6.21.

var ES5Parser = require(’es5’).parser;
ometa EJSParser <: ES5Parser {}
module.exports = EJSParser;

Figure 6.21: Scaffold of the EJSParser module

First it is assured that all required dependencies are loaded before the actual implemen-

tation can take place. Finally the interface of the module is defined to be the parser

itself. Being confronted with the task to create the abstract syntax tree the parser

makes use either of the node constructors specified in the es5-package or the ones

additionally added in the EJS nodes modules. Figure 6.22 shows the minimal contents of

the nodes-modules.

var nodes = module.exports = Object.create(require(’es5’).nodes),
Factory = require(’jsonml’).factory;

Figure 6.22: Scaffold of the EJS-nodes module

As already seen, an extension can be performed without the need to introduce new node-

types to the AST by directly resolving the new syntactic elements during the process of

parsing. In that case the use of the nodes-module as well as the translator is not oblig-

atory. Nevertheless, when dealing with more complex constructs the implementation

71

CHAPTER 6. EXTENDING JAVASCRIPT

may be less of a burden when the resolution can be delayed into a separate translation

pass. If not filled with implementation the translator seen in figure 6.23 performs a

null-transformation, not modifying any of the nodes it visits.

var JsonMLWalker = require(’jsonml’).walker;
ometa EJSTranslator <: JsonMLWalker {}
EJSTranslator.force_rules = false;
module.exports = EJSTranslator;

Figure 6.23: Scaffold of the EJSTranslator module

The configuration flag force_rules is set to false in order to allow transparently

walking all nodes for which no translation-rule is specified. Visiting such a node all

children are recursively walked, but no transformation is performed on the node itself.

Helper Functions

Finally, the ejs-package provides a few auxiliary functions with the purpose to make

the task of translation easier to achieve. The three most important helper functions are

join, expr and stmt.

The first function join expects an arbitrary count of elements and performs a join

operation on them. It is equivalent to [el_1, el_2, ..., el_n].join(”) but more

convenient to read and write.

join("Hello ", "World") //=> "Hello World"

The functions expr and stmt are almost equivalent to each other. Again, both of them

accept an arbitrary number of arguments. They concatenate the arguments just like

join, but afterwards start a parsing process to create an abstract syntax tree from the

given input. If a provided argument is a node-object, it is automatically translated to

a string before join is applied. The difference between the two functions is the rule

specifying the start of the parsing process. Hence, expr expects the input arguments to

form an expression, while stmt expects it to be a statement. Likewise, the output of the

two functions is either an AST representing an expression or a statement. The following

example illustrates the use of stmt in the context of a parser implementation.

loop = "loop" stmt:s -> stmt("for(;;)", s)

The result of this rule is equivalent to the one presented in figure 6.15 but causes

computational overhead, since the statement s is translated back and forth before it can

be added as child-node to the newly created for-statement. Despite this performance

issues, this auxiliary functions show their strength in an environment where complex

AST structures need to be created from medium-sized templates.

6.3 The Grammars

Every package which is part of the framework includes at least one OMeta/JS grammar.

Hence, the dependencies between the different packages naturally appear most plausible

72

6.3. THE GRAMMARS

when inspecting the inheritance chain of the contained grammars.

A majority of the grammars inside the ometa-package (four grammar-modules containing

a total of 11 grammars) is only needed at compile-time. This set of grammars forms

the OMeta-compiler that is always used to compile OMeta/JS code to JavaScript. Most

grammars of the compiler could be taken from the original OMeta/JS-project with only a

few adoptions according to section 6.1.1.

Summarizing the insights from section 6.1.5 it becomes clear that the inheritance of the

different grammars is highly influenced by the way of extension that is chosen:

CodeEJS → CodeES5 Requires the ES5Parser to generate Code instead of AST. No trans-

lation is needed - whether from es5-package nor from ejs-package.

CodeEJS → ASTES5 → CodeES5 EJSParser inherits from ES5Parser and directly “desug-

ars” new syntax to valid ES5 subtrees. The existing ES5 backend can be reused.

No EJSTranslator is needed.

CodeEJS → ASTEJS → CodeES5 EJSParser inherits from ES5Parser but emits EJS-nodes.

New translator is required to resolve all non-ES5 nodes and output valid JavaScript

code. EJSTranslator has to inherit from ES5Translator. Only one pass of transla-

tion is performed. ES5 backend cannot be reused.

CodeEJS → ASTEJS → ASTES5 → CodeES5 Parser is the same as the previous one. Also

requires new translator, but this time the translator outputs valid es5-tree, like the

parser from approach two does. Two steps of translation. Every translator inherits

from JsonMLWalker.

In any case EJSParser has to inherit from the original ES5Parser in order to extend the

recognition capabilities and at the same time maintain a full backwards compatibility with

JavaScript. The first case differs from the rest in a way that it requires the ES5Parser to

be implemented different. It needs to emit strings of JavaScript code instead of an AST.

In consequence, this strategy is not supported by framework at hand.

ometa-package jsonml package

es5-package

OMeta Compiler Walker

Parser Transl.
ES5 ES5

ejs-package

Parser Transl.
EJS EJS

Figure 6.24: Packages as seen from the grammar point-of-view

Approach two and four both allow to reuse the existing backend facilities that are in-

dependent from EJS, like tree-to-source translation, code analysis, visualization and

73

CHAPTER 6. EXTENDING JAVASCRIPT

optimization. Due to this reason these two strategies are natively supported by archi-

tecture as seen in figure 6.24). Nevertheless, with some minor modifications (changing

the inheritance of EJSTranslator from JsonMLWalker to ES5Translator) it is possible

to implement an extension with the tools provided by following approach three.

6.4 Summary

In this chapter a five step process has been presented which allows to easily add syntax

extension to JavaScript. After preparing the environment and adapting OMeta/JS a

complete compilation life-cycle has been introduced. JavaScript is firstly parsed, a

JsonML AST is created to be finally translated back to JavaScript. The subsequent step

builds upon this life-cycle in order to create a language extension. The different ways

of using parsers and translators have been presented from which two approaches have

been chosen. Following the first chosen approach, the parser directly emits an ES5-

compatible AST, which in turn can be translated to JavaScript code by the ES5Translator.

The second alternative introduces a new tree format ASTEJS which is created by the

EJSParser. In an additional step of translation it is than translated to ASTES5 . Finally

a new loop-statement has been introduced to demonstrate how an extension can take

place.The five step process resulted in an architecture which has been presented in

the second section of this chapter. All involved packages have been analyzed. The

ometa-package can be used standalone to allow the inclusion of OMeta grammars in any

project. In addition the jsonml-package may be used if node-constructors and a prepared

walker-grammar are required. The es5-packages provides a full implementation of a

JavaScript parser and translator. The resulting syntax tree may be used to be analyzed,

optimized or manipulated in any other way. Finally, the ejs-package uses all of the

previously introduced packages in order to provide a scaffold for an easy extension

of JavaScript. The third section illustrated the dependencies of all grammars that are

included in the packages to support a better understanding of the architecture at hand.

74

Chapter 7

Usecase: Example Extension

Contents

7.1 Scope Forcing with !{} . 76

7.1.1 Introducing a new Syntax . 78

7.1.2 Implementing the Syntax . 79

7.2 The Substitution Operator “#{}“ . 80

7.2.1 Introducing a new Syntax . 81

7.2.2 Implementing the Syntax . 81

7.3 Lambda Expressions {||} . 82

7.3.1 Introducing a new Syntax . 83

7.3.2 Implementing the Syntax . 85

7.4 Classes and Object Orientation . 86

7.4.1 Introducing a new Syntax . 88

7.4.2 Implementing the Syntax . 90

7.5 Summary . 93

In the previous chapter we have seen how an extension can be created in general. Except

for a newly introduced loop-statement our fictional language EJS has not much to offer so

far. In this chapter we will discuss some more example extensions in order to illustrate

how easy it is to extend JavaScript using the framework at hand. In general the possible

extensions can be grouped into two categories:

1. Extensions that can be translated directly to JavaScript at compile time. One

example for this category is the loop-statement presented in section 6.1.5, which

can be mapped to for(;;).

2. Extensions that require an additional runtime library to work. In section 7.4 a

syntax for classical object orientation is introduced which depends on an imple-

mentation of the class-system at runtime.

It should be obvious that the extensions presented in this chapter neither form a complete

new language, nor do they claim to “fix” JavaScript as a language. Their purpose is to

a) enrich the individual programming experience by providing notational convenience

and b) to illustrate the extension mechanisms provided by the framework.

75

CHAPTER 7. USECASE: EXAMPLE EXTENSION

For each example a common pattern or problem specific to JavaScript is identified before

a solution in JavaScript itself is presented. In some cases a small introduction into some

JavaScript internals is provided to gain a better understanding for the problem at hand

(For a detailed explanation of the ECMAScript internals I recommend Dmitry Soshnikov’s

excellent writings [24, 25]). Afterwards this solution is mapped to a new syntax, mostly

to avoid the verbose constructs that arose from the solution. The examples are presented

in order of ascending complexity.

All extensions are implemented following the three step approach CodeEJS → ASTEJS →
ASTES5 → CodeES5 and therefore require custom node-types. In the implementation,

often the variable nodes is used to store all constructors for node-types. As it can be

seen in section 6.2.4 the collection of EJS-nodes inherits from the nodes contained in the

es5-package.

7.1 Scope Forcing with !{}

JavaScript uses static lexical scoping together with the concept of environments to

implement variable resolution. Variables are declared using the var keyword. The term

var x = 42 introduces a new variable x to the current environment and sets it’s value to

42, we call this procedure a binding. In contrast to other programming languages such

as C or Java that use block scoping, JavaScript only creates environments when lexically

entering a new function1. Therefore it is said to be “function scoping”. Environments

are nested and the search always starts with the currently active environment. Every

environment holds a link to the surrounding environment, called outer-environment.

All entries that can be found directly in an environment are stored in the environment-

record as key-value pairs. Due to the chaining characteristic of nested environments it

is sometimes referred to as scope chain.

This commonly leads to the pattern of immediately calling anonymous function expres-

sions in order to create a new scope and prevent pollution of the outer scope, as seen in

figure 7.5.

var foo = 5;
if(true) { var foo = 6; }
console.log(foo); //-> "6"

// this creates a new scope
(function() {
var foo = 7;
console.log(foo); //-> "7"

})();
console.log(foo); //-> "6"

Figure 7.1: Forcing scope in JavaScript by immediately calling an anonymous function

That way the creation of an environment record is forced and the declaration of variable

foo can shadow the equal named variable defined in the outer environment without

overriding it. Additionally, the shorter version seen in figure 7.2 looks like a reminiscence

of how let can be implemented in Lisp using lambdas.

1There are some corner cases like the catch-statement. Also code evaluated in the global environment or
within with-statements leads to the creation of so-called “object environments”.

76

7.1. SCOPE FORCING WITH !{}

(function(foo) {
console.log(foo); //-> "7"

})(7);
console.log(foo); //-> "6"

Figure 7.2: Using arguments to introduce new variables

Closures

Generally speaking, a closure is a function which preserves the lexical context it is

defined within. This condition is automatically met in JavaScript since each function

stores it’s context in the internal property [[Scope]]. The purpose of a closure is to

assure access to all non-function-local variables referenced inside the function, even if

the outer context already terminated.

function Outer(conserved) {
return function() {
console.log(conserved);

}
}
var closure1 = Outer(1),

closure2 = Outer(2);
closure1(); //=> "1"
closure2(); //=> "2"

Figure 7.3: Closures preserve the lexical context of definition

Figure 7.3 shows the function Outer which awaits one argument conserved and returns

a dynamically created anonymous function. This anonymous function itself is a closure

because it references the variable conserved defined in the scope of Outer. Every time

we call the function Outer the execution enters the very same function code, creates

a new environment and binds conserved to the argument passed during the call. This

environment is preserved as property [[Scope]] of the anonymous function which after

all is returned by Outer.

Furthermore, when calling the returned function stored in closure1 as well as in

closure2 we suddenly gain indirect access to variables inside of the environment which

only lives on through it’s conservation within a closure.

Revealing Module Pattern

The example in figure 7.3 illustrates how the variable conserved can be created and

afterwards be accessed only by calling the returned function. In this setup there is

no other way to either change or read the variable’s contents. This very important

fact initially led to the module pattern, refined by Christian Heilmann under the name

Revealing Module Pattern. The pattern is used everyday by many JavaScript developers,

as it is an effective way to create a category of variables which can be considered to be

private or hidden.

Figure 7.4 on the next page shows a typical example-usage of the revealing module

pattern. By calling Person with “Peter” as argument a new environment with three

77

CHAPTER 7. USECASE: EXAMPLE EXTENSION

var Person = function(name) {
// this is private
var age = 0;

// this will be public
function say_hello() {
console.log("Hello, my name is " + name + " and i’m " + age + ".");

}

// specification of the interface
return {
greet: say_hello,
age: function(new_age) { age = new_age; return this; }

}
}
var peter = Person("Peter").age(32);
peter.greet(); //=> "Hello, my name is Peter and i’m 32";

Figure 7.4: Usage of revealing module pattern

// No new scope is created
{ var foo = 4; }

// foo is local to the new scope
!{ var foo = 4; }

// output of compilation
(function(){ var foo = 4; })()

Figure 7.5: Forcing the creation of a new scope

entries is created. Firstly the formal parameter name, secondly the variable binding

age and finally the function declaration say_hello. Initially we can think of all three

variables as private. However, by returning a new object with the two properties greet

and age, some private information is revealed. This object can in some way be considered

as “public interface” to the module in order to access some of the hidden information.

The implementation of age shows that we may even change the contents of the variables

conserved within the closure. This once again is remindful of how object orientation

can be implemented from scratch in Lisp or other functional programming languages

supporting closures and first-class functions.

7.1.1 Introducing a new Syntax

Due to the widespread use of the pattern(function() {})() a shorter syntactical

description may be introduced which expresses the true character of this phrase. Since

the goal of applying this pattern is to force a new scope we may call the novel expression

“scope expression”. The key idea is to force the creation of a new scope on a block by

prepending an exclamation mark. This gets visible in figure 7.5. The first block-statement

does not create a new scope. As a result, foo is declared in the outer environment. The

second block is prefixed with an exclamation mark to use the novel syntax. The result of

compiling this expression can be found at the bottom-line.

The exclamation mark has been chosen, since it perfectly represents the “forcing”-

character of the new operator. Due to it’s close visual relationship to block-statements it

appears naturally to also use it in combination with for-statements as in figure 7.6.

78

7.1. SCOPE FORCING WITH !{}

for(var i = 0; i < arr.length; i++) !{
var el = arr[i];
...

}

Figure 7.6: Example usage of the scope-forcing operator

In contrast to block-statements, scope expressions may return results. This characteristic

also makes them suitable for revealing module declarations. An example for this usage

can be seen in figure 7.7.

APP.module = !{
...
return {
// interface of the module

}
}

Figure 7.7: Using the scope-forcing operator to implement the revealing module pattern

7.1.2 Implementing the Syntax

The implementation of the scope expression can be accomplished straight forward.

The first thing to do is to extend EJSParser in order to be able to recognize the new

syntax. In this special case this can be achieved without complications. The usage of the

exclamation mark only collides at one possible position with the common ECMAScript

grammar - when it is followed by an expression to form a unary-expression. Luckily, a

block-statement is not a valid JavaScript expression2 which leaves us with the grammar

as seen in figure 7.8.

scopeExpr = "!" block:b -> nodes.ScopeExpr(b),

// Register scopeExpr as new expression
expr = scopeExpr | ^expr

Figure 7.8: Extending the parser to allow scope forcing

The second line of code is needed to tell the parser to expect the new scope expression

at any place a common expression may occur. In this implementation the major pattern

for extension gets visible. At first a small grammar module is implemented to recognize

the novel syntax. Afterwards this module is “registered” at the places it is expected to

occur, here as expression.

The node which is instantiated by the parser and added to the AST is of the type

ScopeExpr. Since this is not a valid ES5 node it needs to be created first. This can be

seen in figure 7.9.

2There is one small corner case with an empty block statement, since it cannot be distinguished from an
object-literal. Since forcing a new scope and than leaving the block empty is pointless, this corner case renders
itself insignificant.

79

CHAPTER 7. USECASE: EXAMPLE EXTENSION

Factory(’ScopeExpr’);

Figure 7.9: Adding a new node-type to represent scope-expressions

The factory function is called with the node-type as the only argument, since no attribute-

object or special callback is required. Now that the ASTEJS contains nodes that are alien

to the translator of the es5-package we need to replace it with a subtree representing

the immediate call of a anonymous function. Therefore, the EJSTranslator is extended

with the code from figure 7.10.

ScopeExpr :n = walk:block -> stmt(’(function()’, block, ’)()’)

Figure 7.10: Extending the translator to convert scope expressions into wrapping function calls

The only child, a block statement, is recursively translated in order to be reused in the

semantic action on the right hand side. The helper function stmt is called with a mixture

of strings and the AST node representing the block statement. It constructs a new AST

node representing the function call with the block filling the function’s implementation.

The subtree returned by the helper is a valid ASTES5 and can be translated by the

ES5Translator to the appropriate JavaScript source code.

7.2 The Substitution Operator “#{}“

The second extension deals with the simple fact that JavaScript does not support string-

substitution. In JavaScript strings and other primitive values are commonly concatenated

using the + operator. Assembling a simple greeting message like “Hey Jim, how are

you?”, with the name being a variable, requires a destruction of the string into three

parts:

var greeting = "Hey " + name + ", how are you?"

This manual concatenation is not only inconvenient to read and write, but also error

prone. The optional in-between whitespaces and plus-operators make it difficult to

assure that whitespaces and punctuation are placed correctly. Additionally, inserting

linebreaks before a plus-operator terminates the expression, since a semicolon is inserted

automatically. This can be avoided by using the alternative expression:

var greeting = ["Hey ", name, ", how are you?"].join(’’)

Compared to the original version, the convenience to read and write this expression is

not much increased. Nevertheless, it comes with three advantages:

1. Linebreaks may be inserted at any arbitrary position without breaking the expres-

sion, since it is terminated with the closing bracket

2. Calculations like age + 10 may be inserted without parenthesis. The correct

precedence of the operators is assured by using commas as separator.

80

7.2. THE SUBSTITUTION OPERATOR “#{}“

3. A higher performance can be expected according to [31]. The join operation has

to allocate memory only once in order to concatenate the different parts instead of

reallocating it for each single concatenation3.

7.2.1 Introducing a new Syntax

Other languages like PHP and Ruby offer an elegant solution to the problem of inserting

variables and expressions into strings. It is called string substitution. Even the C

standard library handles this usecase by supporting a similar functionality with sprintf.

All three solutions can be seen in figure 7.11.

// PHP
$greeting = "Hey $name, how are you?";

// Ruby
greeting = "Hey #{name}, how are you?";

// C
char greeting[256];
sprintf("Hey %s, how are you", greeting, name);

Figure 7.11: Three different implementations of string-substitution

In the following we will see how to incorporate the Ruby syntax for string substitutions

into EJS. Obviously, the PHP syntax could be implemented like-wise. The example in

figure 7.12 shows how the resolution of the syntax to JavaScript can take place. It gets

visible that the string has to be split at any occurrence of a substitution in order to be

converted into the array-notation.

// input: EJS
var greeting = "Hey #{name}, how are you?";

// output: JavaScript
var greeting = ["Hey ", name, ", how are you?"].join(’’)

Figure 7.12: Resolving the string-substitution of EJS to JavaScript

7.2.2 Implementing the Syntax

According to the implementation pattern we have seen in the previous example, the first

thing to do is to extend the parser in order to recognize the new syntax. This can be seen

in figure 7.13 on the following page. For reasons of simplicity only double-quoted strings

are enabled to support the extended syntax while single quoted strings may remain

unchanged.

Right after the opening quote an arbitrary number of strings and string-substitutions is

expected. The string-substitution recognizes the opening sequence #{, then matches an

expression before it consumes the closing curly brace }. The rule strPart in turn simply

3This phenomena could not be reproduced by a micro-benchmark using Node.js. Without having performed
further investigation, it is most likely that the JIT-compiler of the underlying V8 engine does a lot of optimization
in this very case.

81

CHAPTER 7. USECASE: EXAMPLE EXTENSION

stringExpr = spaces ’"’ (strSubst | strPart)+:cs ’"’ -> nodes.StringExpr(cs),
strSubst = ‘‘#{’’ spaces expr:e spaces ’}’ -> e,
strPart = <(~(’"’| ‘‘#{’’) char)+>:cs -> nodes.String(cs),

// add string expression as new primary expression
primExpr = stringExpr | ^primExpr

Figure 7.13: Extending the parser to allow string-expressions

consumes all characters that neither indicate the end of the string nor the begin of a

string-substitution. The node-type StringExpr finally is used to create the appropriate

AST node. The creation of the required node-constructor using the factory can be seen

in figure 7.14.

Factory(’StringExpr’, {}, function(parts) {
this.appendAll(parts);

})

Figure 7.14: Adding a new node-type to represent string-expressions

The provided callback-function is used to append all recognized parts as individual

child-nodes. Otherwise, the array parts containing all strings and expressions that are

part of the expression would end up as the only child of the node.

Equivalent to the previous extension, the last step of implementation is to adapt the

translator in order to convert the new node type to a valid ASTES5. This can be seen in

figure 7.15.

StringExpr :n = walk*:els -> expr(nodes.ArrayExpr(els), ’.join("")’)

Figure 7.15: Extending the translator to “desugar” string expressions to arrays

To translate the string expression node n into a subtree, which in turn can be compiled to

the expected JavaScript code, several tasks have to be performed. At first, all children are

translated recursively and stored into the variable els. Then a new array expressions is

created using the node-constructor ArrayExpr with the child-nodes as parameter. Finally,

the magical helper function expr is used to avoid creating the member-expression (join),

the call-expression and the argument (“”) by hand.

Granted, the extension of the parser might be a little more sophisticated than in the

first example, but in total only ten lines of code are necessary to add a second valuable

feature to JavaScript.

7.3 Lambda Expressions {||}

One of the most important features of JavaScript is that functions are first-class objects.

Hence, there are not only function declarations (which are in fact statements) but also

function expressions, also called “inline functions” or “anonymous functions”. This

allows functions to be used the same way as common objects. For example they can be

82

7.3. LAMBDA EXPRESSIONS {||}

passed as arguments to higher order functions which in turn may return yet another

dynamically constructed function.

We have already seen that in JavaScript functions are not only used in the traditional

way, in order to allow code reuse, but also to control the scope of variable declarations

and ensure encapsulation. They are also part of every constructor definition, which we

will see in the following section 7.4.

Since functions are so important the keyword is dispersed everywhere. While it may be

reasonable for function declarations or constructor functions in order to create a visual

footprint in the source code, it is too verbose for function expressions, especially when

used as callback functions. The following example makes use of jQuery to illustrate the

usage of passing functions as arguments:

$(’#navigation a’).filter(function() {

return $(this).html() === $(this).attr(’title’)

}).map(function(i, el) {

return $(el).parent();

}).click(function(evt) {

console.log("The parent of a link has been clicked");

return false;

});

Despite the sparse sense of this example, it gets clearly visible that a great part of the

code consists of redundant character sequences. As already stated, calling a function by

passing another function appears quite often in JavaScript. This always results in the

pattern:

called(function(a,b,c){ return a+b+c; })

Brendan Eich, the creator of JavaScript, apologized for picking such a long keyword4

and made clear that it is originated in AWK5.

The remainder of this section deals with removing much of this visual noise which is not

possible in JavaScript itself.

7.3.1 Introducing a new Syntax

In order to pass behavior to a function-call the programming language Smalltalk provides

a mechanism called “code blocks”. The blocks can be compared to functions in JavaScript

or lambdas in Lisp, since they all are first-class objects and save their lexical scope as a

closure. Ruby adapted the concept of code blocks and introduced the following syntax6:

called {|a,b,c| a+b+c }

It is worth noting that this syntax is in discussion to be added to the latest release of

the ECMAScript Standard [7] where the syntax is representing “block-lambdas”. In

consequence, maybe in the near future, the extension developed in this section is not

4http://brendaneich.com/2011/01/harmony-of-my-dreams/
5http://brendaneich.com/2010/07/a-brief-history-of-javascript/
6In fact Ruby provides several ways to create blocks. This one is chosen here, since it is the one most

compatible to JavaScript.

83

http://brendaneich.com/2011/01/harmony-of-my-dreams/
http://brendaneich.com/2010/07/a-brief-history-of-javascript/

CHAPTER 7. USECASE: EXAMPLE EXTENSION

needed anymore since it will be natively implemented in JavaScript. Nevertheless, the

semantics of block-lambdas are slightly different than the results achieved by directly

translating {||} into function(){}. To list just some of the differences:

1. Block-lambdas do not create a new arguments-object

2. Block-lambdas do not change the binding of this

3. Block-lambdas behave the same way as common block-statements (i.e. {}) when

calling break, continue or return

Despite the fact, that the implementation presented here cannot hold up to any of these

requirements we will denote it as lambda expressions in order to differentiate between

normal function-expressions and the extension discussed in the remainder of this section.

The extension itself is three-pronged. The first and most obvious prong is the replacement

of the function keyword by using the unique pattern {||} as it is known from Ruby.

The second prong is the introduction of a new syntax for calling a function. If the only

argument is a lambda-expression the surrounding braces may be omitted since the

lambda is already bracketed by curly braces as delimiters. Finally, the last prong is the

implicit return, which reduces the need of explicitly calling return. If the last statement

inside of the function’s body is an expression it will be returned automatically. Applying

this novel syntax to the example above results in a much cleaner version:

$(’#navigation a’).filter {|i| $(this).html() === $(this).attr(’title’) }

.map {|i, el| $(el).parent() }

.click {|evt|

console.log("The parent of a link has been clicked");

false

}

About 24% of the used characters7 could be removed leaving us with code that is much

easier to read without being distracted by redundant braces and keywords.

It is still possible to add other parameters than a function callback by simply passing

them the usual way:

called(x,y) {|a,b,c| a+b+c }

Actually, this expression is semantically equivalent to placing the callback within the

calling braces:

called(x,y, {|a,b,c| a+b+c })

Yet another example illustrates the combined use of calling a function, both with and

without additional parameters:

$.getJSON(’/get_posts.php’) {|data| console.log(data); }

.error {|evt| console.error("An error ocurred") };

// which is compiled to

$.getJSON(’/get_posts.php’, function(data) { console.log(data)})

.error(function(evt) { console.error("An error ocurred") })

7Original character-count: 207, optimized version: 157. Whitespaces are not included.

84

7.3. LAMBDA EXPRESSIONS {||}

Again, the jQuery API is used for this example. This time to send an asynchronous

request to the server and register two callbacks. One function in case of success and

one to handle errors.

7.3.2 Implementing the Syntax

The three pronged nature also applies to the implementation of the new syntax. As usual,

we first point our attention to the implementation of the parser as it can be seen in figure

7.16.

// 1. Allow lambda-expression as alternative function expression
lambdaExpr = "{" ("|" spaces listOf(#formal, ’,’):a "|" -> a

| "||" -> []
):args spaces srcElem*:ss

"}" -> nodes.LambdaExpr(nodes.FunctionArgs(args),
nodes.BlockStmt(ss)),

funcExpr = lambdaExpr | ^funcExpr,

// 2. Introduce a new syntax for calling functions
lambdaCallExpr :p = ("(" listOf(#assignExpr, ’,’):a ")" -> a

| empty -> []
):args lambdaExpr:f -> nodes.CallExpr(p, args.concat(f)),

accessExpr = accessExpr:p lambdaCallExpr(p)
| ^accessExpr

Figure 7.16: Extending the parser to allow the new function expressions

Firstly, the matching function for the lambda-expression is implemented. There are two

cases to handle, whether there are given arguments or not. Afterwards, an arbitrary

amount of source elements is matched in order to form the function’s body. The argu-

ments are wrapped inside of a FunctionArgs node, whereas the body is represented by

a block-statement containing all matched statements.

Secondly, the new syntax for calling functions with a trailing block-lambda is introduced.

Again, it has to be handled if additional arguments are supplied or not. The new call-

expression takes one parameter p, which is the left associative access-expression the

call will be send to. This strategy has been discussed in section 6.1.2. In this section we

learned how to make use of accessExpr and parametrized rules in order to allow different

types of access-expressions (for instance member-expressions or call-expressions) to be

chained in arbitrary order.

The rule lambdaExpr creates an instance of the almost equally named node-type whose

simple implementation can be seen in figure 7.17.

Factory(’LambdaExpr’);

Figure 7.17: Adding a new node-type to represent lambda-expressions

Once again, the last step is to extend the EJSTranslator in order to translate the

LambdaExpr nodes to valid es5-nodes (see figure 7.18).

85

CHAPTER 7. USECASE: EXAMPLE EXTENSION

LambdaExpr :n = walk:args implicit_ret:body -> nodes.Function(args, body).expr(true),
implicit_ret = walk:body !this.helpers.implicit_return(body)

Figure 7.18: Extending the translator to convert lambda-expressions into functions

Both children, arguments and body, are recursively translated before a common function-

node is created. In addition, the function-node is flagged as expression. A more

interesting part is the implementation of “implicit returns”. Instead of traversing the

function body by applying the rule walk a new rule implicit_return is introduced. The

new rule in turn applies walk before a helper function is used to manipulate the results.

The implementation of the helper can be found in appendix A.4. In brief, the function

analyses the child-nodes included in body. If the last child-node is an expression, which

may be returned a new ReturnStmt is created around the child-node and the modified

function body is returned.

An alternative to implement this behavior is to write a dedicated OMeta/JS translator

and call it as a foreign rule (Also see section 5.1.9). Using this recursive approach it is

more easy to also detect “indirect” expressions which may occur if the last element is an

if-statement.

7.4 Classes and Object Orientation

The last extension presented here deviates from the previous three. Not only the

implementation of the translator is a little more challenging but the extension, as we

will see, also requires a runtime in order to be used. It also appears to be the most

interesting one, since we take the chance to not only introduce some “syntactic sugar”,

but also try to close the gap between classical and prototypal inheritance (at least when

it comes to class-definitions).

There is a vast amount of libraries simulating a class-based inheritance as known

from languages like Java, C++ or Ruby to make inheritance and object orientation

(abbr. OO) in JavaScript less of a burden. Some examples are Joose8, Klass9, JsClass10,

myClass11, species12 and proto-js13, just to name a few standalone libraries. Larger

base-libraries like Ext.JS14, Dojo15 and MooTools16 also implement their own class-

based inheritance amongst many other features. For those readers yet unfamiliar with

prototypal inheritance the following section provides a small overview into this very

topic.

8http://joose.it/
9http://dustindiaz.com/klass

10http://jsclass.jcoglan.com/
11http://myjs.fr/my-class/
12https://github.com/k33g/species
13https://github.com/rauschma/proto-js
14http://sencha.com/
15http://dojotoolkit.org
16http://mootools.net

86

http://joose.it/
http://dustindiaz.com/klass
http://jsclass.jcoglan.com/
http://myjs.fr/my-class/
https://github.com/k33g/species
https://github.com/rauschma/proto-js
http://sencha.com/
http://dojotoolkit.org
http://mootools.net

7.4. CLASSES AND OBJECT ORIENTATION

Prototypal Inheritance

In order to understand how inheritance is achieved in JavaScript this section introduces

the core-concepts of prototype-based inheritance and shows the differences to the

class-based alternative.

In class-based object-orientation many objects are grouped within one class, which

describes the layout and shared behavior of all of it’s instances. Behavior further can

be specialized by creating a subclass of the superclass, or in other words extending the

superclass. Instances of the subclass embody the behavior specified in the subclass as

well as the one specified in the superclass.

This relationship between an object and it’s class often is referred to as instance-of -

relationship [26]. Class based object-orientation can be compared to building a car from

a blueprint. It hence can be split into two separated temporal phases. At modeling-time

the engineer layouts how the car should look like and behave once it is built. At runtime

a factory can create instances of the abstract blueprint and the finished shiny cars are

ready to be used.

The concept of prototype-based inheritance is quite different, but it is said to be more

easy to understand, because there are less basic-concepts one have to understand to

use the language [26]. Instead of instantiating objects from an abstract plan objects

are created directly by cloning an existing object. Additional to cloning the language

must provide a functionality to create a parent-link from one object to it’s prototype.

The object automatically inherits all state and behavior of it’s prototype once such a

link is realized. Of cause further behavior can be added to the object. Only if a desired

functionality cannot be found in the object itself, it’s prototype is consulted. If the

prototype does not know the answer either - again it’s prototype is asked. The search

continues in the so called prototypal-chain. It is important to note that the cloning-

process preserves the link to the prototype of the cloning-source. If we clone an object

multiple times, all newly created objects, as well as the original share a single prototype.

They seem to form a class of objects and share behavior. Hence changes to the prototype

automatically influence all derived child-objects.

The analogy to the subclassing-process as seen in class-based inheritance now can be

broken down into a two-step process. At first create a new object together with it’s

prototype-link and afterwards fill it with the new desired behavior and state.

Implementation in JavaScript

Every object in JavaScript has a number of different internal properties. Among these,

there is [[Prototype]] which describes the link to the objects prototype. As we are

dealing with an internal property there is no direct way to access or manipulate this

property like we would expect. So how can we set the prototype of one object to point to

another object?

In figure 7.19 on the next page the difficulty of this operation gets visible. Let’s disas-

semble the internal process of calling new Person():

1. A new object, let’s say obj, is created with it’s internal property [[Prototype]]

set to person.

87

CHAPTER 7. USECASE: EXAMPLE EXTENSION

2. The constructor function is called in context of obj Using the arguments provided

in the call to new.

3. Finally obj is returned.

var Person = function(){};
Person.prototype = person; // instance containing shared behavior
var peter = new Person();

Figure 7.19: A prototype-link in JavaScript can be created by an intermediate constructor-function

This clearly is one of the most irritating miss-conception in JavaScript’s language design.

According to Douglas Crockford [4] the purpose of this constructor-pattern was “to make

the language more familiar to classically trained programmers”. He also proposed an

alternative implementation, which avoids the unnecessary constructor-noise and reveals

“JavaScript’s true prototypal nature”. This pattern has found it’s way in the 5th edition

of the ECMAScript standard [5] as the built-in function Object.create(obj, prop)17.

It equips us with a single-step-tool to easily create a new object and link it’s prototype to

a specified object.

var peter = Object.create(person);
Object.getPrototypeOf(peter) === person; //=> true

Figure 7.20: Object.create is a shorter solution to create a prototypal-link between two objects

With this functionality we might re-implement the new-operator as seen in listing 7.21.

This simplified implementation illustrates the basic three internal steps described above.

Function.prototype.new = function() {
var obj = Object.create(this.prototype);
this.apply(obj, arguments);
return obj;

}
// now ‘new‘ could be used like
var peter = Person.new();

Figure 7.21: Simplified implementation of the new-operator using Object.create

Working with JavaScript’s prototype-system it is important not to confuse the internal

[[Prototype]] property and the prototype property of a constructor-function. The first

is used to resolve member-access in the prototypal chain. The second one in contrast

simply stores a reference to the object, which will be the prototype of all objects created

with this constructor.

7.4.1 Introducing a new Syntax

As already illustrated in the introduction of this section there are quite a few different

implementations for object orientation in JavaScript. In the following we will take a

17Object.create expects two arguments. The first one will be used as prototype when creating the new
object. The second optional argument describes the object’s properties[15]

88

7.4. CLASSES AND OBJECT ORIENTATION

brief look at two examples: Ext.JS and MooTools18. Yet, both are fully compatible to

JavaScript and do not require extra syntax. They mastered the challenge of creating a

domain specific language within JavaScript.

Since we are trying to develop an example extension, the following examples only cover

the basic features of object orientation, such as class-definition and inheritance. Of

course both implementations offer a lot more functionality.

// Ext.JS
Ext.define("Person", {
constructor: function(name, age) {
this.name = name; this.age = age;

},
birthday: function() { return this.age++ },
greet: function() {
return "Hey, my name is " + this.name +

" and I’m " + this.age " years old";
}

});

// MooTools
var Person = new Class({
initialize: function(name, age) {
this.name = name; this.age = age;

},
birthday: function() { return this.age++ },
greet: function() {
return "Hey, my name is " + this.name +

" and I’m " + this.age " years old";
}

});

Figure 7.22: The definition of classes in Ext.JS and MooTools

Figure 7.22 illustrates how “classes” are defined in each implementation. It gets visible

that there are some differences between the two implementations. While classes are

defined in Ext.JS calling the method Ext.define and supplying the new class-name as

first argument, MooTools creates classes by instantiating a new Class. Additionally, the

naming of the constructor-functions differs.

In figure 7.23 on the next page we can inspect how the classes of the previous example

can be extended to add specialized behavior. A new method work is implemented to

allow a person to do it’s every day job. Sadly, this does not change anything about the

fact, that the age of each instance is constantly incremented every year.

Again, differences can be discovered in the way the parent class is specified. The

first difference is the naming of the property (extend vs. Extends). A more significant

difference is the fact that Ext.JS requires the name of the parent class as string, whereas

MooTools expects the parent-object itself.

In the following step we will take a look at a unified and library neutral syntax. The goal

of this novel syntax (as it can be seen in figure 7.24 on the following page) is to a) close

most of the gap between the two different implementations and b) to be able to easily

switch the underlying base-library.

In this example new syntax elements, such as the class keyword, are introduced to

create a intermediate level of abstraction. The constructor is specified by an anonymous

18Detailed information about the individual implementation can be found at http://docs.sencha.com/
ext-js/4-0/#!/api/Ext.Class for Ext.JS and http://mootools.net/docs/core/Class/Class for MooTools.

89

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Class
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Class
http://mootools.net/docs/core/Class/Class

CHAPTER 7. USECASE: EXAMPLE EXTENSION

// Ext.JS
Ext.define("Employee", {
extend: "Person",
constructor: function(name, age, job){
this.callParent(arguments);
this.job = job;

},
work: function() {
return "Doing my job as " + this.job;

}
});

// MooTools
var Employee = new Class({
Extends: Person,
initialize: function(name, age, job) {
this.parent(name, age);
this.job = job;

},
work: function() {
return "Doing my job as " + this.job;

}
})

Figure 7.23: Class inheritance in Ext.JS and MooTools

class Person {
function(name, age) {
this.name = name; this.age = age;

}
birthday: {|| this.age++ }
greet: {|| "Hey my name is #{this.name} and I’m #{this.age} years old." }

}

class Employee < Person {
function(name, age, job) {
super(name, age);
this.job = job;

}
work: {|| return "Doing my job as #{this.job}" }

}

Figure 7.24: Unified syntax for class definition

function instead of explicitly naming it. Inheritance can be achieved by using the Child

< Parent operator in the header of the class definition. Again, this solves the problem of

finding the correct property name to save the parent-class in. Properties describing the

instances of the class can be added as key-value pairs. Separating commas are optional.

Even if in this example only behavior is added to describe the instances, also atomic

values or objects could be used. Depending on the actual OO-implementation the

properties may either be added to the prototype of the instance or to the instance itself.

The example also utilizes syntax extensions as they are presented earlier in this chapter,

such as lambda-expressions and string substitution.

7.4.2 Implementing the Syntax

We start off by making changes to EJSParser just like we did with all previous extensions.

The grammar needs to recognize the class-definition statements. The required changes

90

7.4. CLASSES AND OBJECT ORIENTATION

can be seen in figure 7.25.

klass = "class" spaces <name (’.’ name)*>:n ("<" spaces <name (’.’ name)*>:e)?
"{"

funcExpr?:c
klassProps?:p

"}"
-> nodes.ClassStmt(n, e, c, p),

klassProps = objBinding:f ((sc | ",") objBinding)*:r -> nodes.ObjectExpr([f].concat(r)),
stmt = klass | ^stmt

Figure 7.25: Extending the parser to allow class-statements

The format of the declaration header is stated in the first line of code. The name of the

class is followed by an optional name specifying the parent-class. The body of the class

consists of one optional function-expression, representing the constructor, followed by an

also optional definition of class-properties. Each individual property is recognized by the

rule objBinding, which is part of the ES5Parser grammar and matches bindings such

as foo: 42. The properties can be separated using commas, linebreaks or semicolons.

The node representing the statement is constructed by passing four parameters being

the name, parent-class, constructor and the instance-description. Figure 7.26 illustrates

the implementation of the node-constructor.

Factory(’ClassStmt’, {
name: undefined,
parent: undefined

}, function(name, parent, constr, spec) {
this.name(name)

.parent(parent)

.append(constr, spec);
});

Figure 7.26: Creation of the node-constructor for class-statements

In contrast to the node-constructors we have seen so far, the ClassStmt makes use of

the attributes-object to store the class name and the name of the parent class. The

callback function is used to set the values for name and parent. Afterwards the nodes

representing the implementation of the class body are appended as children.

The most interesting part of the class-statement is the implementation of the translator.

When designing the translator we have to choose between two approaches a) map the

class definitions directly to a special OO-implementation like Ext.JS or b) create a neutral

class-description object.

The latter option can, at runtime, be mapped to a specific implementation and hence

appears to be more flexible. Using this neutral approach, the definition of the example

class Employee might look as seen in figure 7.27 on the next page.

It gets visible that an actual implementation of Object.define_class has several options

in order to assemble the class. The first argument simply represents the name of the class

which shall be created. The second argument is used to further specify the internals,

much like a blueprint does. Let’s step through this specification object. The first two

properties parent_name and get_parent both allow to access the parent of the class.

91

CHAPTER 7. USECASE: EXAMPLE EXTENSION

Object.define_class("Employee", {
parent_name: "Person",
get_parent: function() { return Person },
set_class: function(__class__) { Employee = __class__ },
constructor: function(name, age, job) { ... },
spec: {
work: function() { ... }

}
});

Figure 7.27: Compilation result for class Employee

The latter of the two is a function which stores a reference to the parent object within

a closure. This defers the resolution of the reference to the invocation of get_parent.

The third property set_class makes use of a similar mechanism. It allows to bind the

created class to a variable in the lexical scope of definition. The constructor function is,

independently from the base library, always stored in the property named constructor.

Finally, all other properties describing the instance are stored within the object spec.

Before discussing the actual implementation of the translator it is worth taking a look at

how a mapping to both libraries Ext.JS and MooTools might be achieved.

Object.define_class = function(name, desc) {
var klass = desc.spec;
klass.extend = desc.parent_name;
klass.constructor = desc.constructor;
return Ext.define(name, klass);

}

Figure 7.28: Mapping the class-definition to Ext.JS

The implementation for Ext.JS can be seen in figure 7.28. Here it gets visible how

the string, specifying the parent-class, is mapped to the property extend, while the

constructor is saved as equally named property. Finally, Ext.define is called to actually

start the class-definition process of Ext.JS.

Object.define_class = function(name, desc) {
var klass = desc.spec;
klass.Extends = desc.get_parent();
klass.initialize = desc.constructor;
desc.set_class(new Class(klass))

}

Figure 7.29: Mapping the class-definition to MooTools

In contrast to the Ext.JS implementation, figure 7.29 shows how a mapping to MooTools

can take place. This time the parent object, stored in the closure of get_parent, is

mapped to the property Extends and the constructor is saved as property initialize.

Finally, the function set_class is used which assigns the newly created class to a

variable in the lexical scope of definition.

Figure 7.30 displays the additions to the translator that are necessary to output the

neutral class-specification discussed above.

92

7.5. SUMMARY

ClassStmt :n = walk:constr walk:spec
-> stmt(’Object.define_class("’, n.name(), ’", {’,

’parent_name: "’, n.parent(), ’",’,
’get_parent: function() { return ’, n.parent(), ’},’,
’set_class: function(__class__) { ’, n.name(), ’=__class__},’,
’constructor:’, constr, ’,’,
’spec:’, spec,

’})’);

Figure 7.30: Implementation of the translator for class-statements

Following the implementation pattern a last time all children are translated recursively in

a first step. Afterwards the stmt-helper is used in order to create a subtree representing

the given textual input. The usage of the helper is comparable to it’s first application at

the translation of the ScopeExpr. The increased complexity adheres to nothing but the

pure number of arguments.

The observant reader may have noticed that we did not discuss the realization of the call

to super in figure 7.24. We silently jumped over this feature to keep the implementation

of the example at a reasonable level. Of course the keyword super might be compiled

to an invocation of this.__super which in turn could be mapped to the appropriate

method call, such as .callParent for Ext.JS.

In summary, the extension elaborated in this section allows to use a neutral syntax

to define classes. This syntax, in combination with a runtime mapping to the desired

base-library, offers a lot of possibilities for future configuration and extension.

7.5 Summary

The four extensions presented in this chapter only allow a small peek at the wide range

of possibilities offered by the framework. The first extension, forcing the creation

of scope, illustrated how a simple extension can be implemented. The second one,

string substitution, required a more challenging parser but followed the same model of

implementation. The level of complexity has been increased by introducing the third

extension, lambda expressions. Both implementations, parser as well as translator have

been more sophisticated. In order to allow implicit returns the latter had to call a

function which analyzes the contents of the expression body. The last and most advanced

syntax-extension equips the programmer with a new way to declare classes and express

inheritance. The neutral implementation allows a mapping of the class-declaration to a

library of choice (like Ext.JS or MooTools), which is performed at runtime.

93

Chapter 8

Conclusions

Contents

8.1 Related Work . 95

8.2 Future Work . 96

This thesis showed how language extensions for JavaScript can be created and proposed

a framework implementation which may be used as foundation for this very purpose.

Such a language extension may be applicable in many contexts like experimentation

with future JavaScript features, as a domain specific language within a small company

or by individual web developers to increase their productivity.

Nevertheless, the professional usage highly depends on future work and support. “One

language for one company” sounds like a great idea at the first glance. All developers of

a company may contribute to a great language which fits the usual business perfectly.

They may add more and more syntax for common design patterns. But all this may

turn into a problem if the one who built the compiler leaves the company. As usual, the

question of support and maintenance casts a dark shadow on small projects like this

framework.

8.1 Related Work

Of course the language extension framework presented in this thesis is influenced by a

lot of related implementations out there. The original implementation of OMeta/JS did

have the largest influence of all since I started with modifying the JavaScript parser and

translator delivered as part of OMeta/JS.

Furthermore, my framework is not the only JavaScript-Parser implementation written in

OMeta/JS. Tom Van Cutsem created a parser which is much closer to the ES5 specification

than the parser presented in this thesis. His implementation1 has been the inspiration

for using JsonML as data structure for the AST.

Under the many existing JavaScript extensions CoffeeScript (created by Jeremy Ashke-

nas) appears to be the most successful one. CoffeeScript adds many features to

1The parser can be found at http://code.google.com/p/es-lab

95

http://code.google.com/p/es-lab

CHAPTER 8. CONCLUSIONS

JavaScript in order to make working with it less of a burden. Similar to the EJSParser,

CoffeeScript’s parser is automatically generated from a grammar (Instead of using

OMeta/JS it uses jison2 as parser generator). There is one major difference between

CoffeeScript and the framework presented here. CoffeeScript represents a language

derivate of JavaScript, not a superset. It is not built to extend JavaScript but to modify

it at large portions. My framework in contrast provides not a complete language but a

generic toolkit to easily create an individual JavaScript extension. Nevertheless, Coffee-

Script has been a huge inspiration since it demonstrated that a language which compiles

to JavaScript can be used in production. Additionally, the idea of registering extensions

to the module-system of Node.js in chapter 6 derives from CoffeeScript.

Most comparable implementations can be grouped in two categories. Either they form a

completely (or partially) new language like CoffeeScript does or they try to implement

the features of future ECMAScript versions in order to experiment with them (One

prominent candidate for this category is Google’s traceur compiler3). My approach in

turn is to be more generic in order to be able to experiment with new syntax elements

for JavaScript. The presented work is neither a full language nor an implementation of

the future JavaScript. Nevertheless, it can be used for both purposes.

8.2 Future Work

Since this work is mainly built on OMeta any improvement on OMeta would also have a

direct impact on the language extension framework.

With the rewrite of OMeta/JS as it is presented in chapter 6.1.2 on page 51 some

improvements could be achieved. One large drawback that came with the rewrite is

an increased time for compilation. In previous discussing the performance of OMeta

grammars has been no concern for the presented platform. The compilation from e.g.

EJS to JavaScript is only performed once during deployment. Nevertheless, there is

much space for improvement at this point. The same applies to error reporting provided

by OMeta/JS. The rewrite could improve the error reporting a little. However, PEG.js

showed that packrat parsers can support solid error-reporting.

Some design decisions (for instance choosing JsonML over the Object Notation) have

been in induced by the fact that OMeta/JS does not yet support the pattern matching of

generic objects. A proposal to solve this problem can be found in appendix B.3. After

having added the object pattern matching capabilities to OMeta/JS it would be possible

to implement a new AST format fully compatible to the Spidermonkey Parser API. This

would be not just a cosmetic change but highly increase the chance for a reuse of the

AST.

On the other hand, the parsers and translators may be modified to preserve position

and whitespace4 information. The code generator (ES5Translator) can be improved to

create line-to-line equivalence in order to support a better debugging on generated code.

The implementation of JsonML nodes also may be enhanced by adding more features

to perform queries on the children of each node. The inspiration for this querying

2http://zaach.github.com/jison/docs/
3https://code.google.com/p/traceur-compiler
4Comments are currently also treated as whitespace and hence discarded.

96

http://zaach.github.com/jison/docs/
https://code.google.com/p/traceur-compiler

8.2. FUTURE WORK

capabilities come from jQuery. Equipped with this functionality one might write rules

like:

rule :n = ?n.find(’> VarBinding’).empty() walk+:children -> // No direct declarations

As a result, this could combine the elegance and expressive power of both worlds,

grammars and query languages.

Finally, another approach of creating a code generator has been presented by Kaehler

and Warth [12]. They describe how an OMeta parser may be applied in reverse to

generate code from a syntax tree. The information which is not stored within the AST

has to be extracted from the parsing rules. This strategy sounds very promising and

could be used to remove the need to write a translator by hand in order to further

simplify the usage of the framework.

97

Appendix A

Code Samples

Contents

A.1 PEG-Grammars . 100

A.2 Visitor Based Implementation . 102

A.3 Recursive Descent Lisp Parser . 103

A.4 Implementation of Implicit Returns . 104

99

APPENDIX A. CODE SAMPLES

A.1 PEG-Grammars

grammar Lisp

Program <- Atom

Atom <- Pair
/ nil
/ number
/ string
/ identifier

Pair <- ("(" _ car:Atom _ "." _ cdr:Atom _ ")")

nil <- ("nil")

number <- ([0-9]+)

string <- ("\"" [^"]* "\"")

identifier <- ([a-zA-Z_$]+)

_ <- [\t\n]*

Figure A.1: PEG-Grammar for Canopy

Program = Atom EOS

Atom = Pair
/ nil
/ number
/ string
/ identifier

Pair = ’(’ _ Atom _ ’.’ _ Atom _ ’)’

nil = ’nil’

number = [0-9]+

string = ’"’ [^"]* ’"’

identifier = [a-zA-Z_$]+

_ = [\t\n]*

EOS = !.

Figure A.2: PEG-Grammar for Language.js

100

A.1. PEG-GRAMMARS

ometa Lisp {

Program = Atom,

Atom = Pair
| nil
| number
| string
| identifier,

Pair = ’(’ _ Atom:car _ ’.’ _ Atom:cdr _ ’)’
-> [car, cdr],

nil = ’nil’
-> { type: ’nil’ },

number = digit+:digits
-> { type: ’num’, val: parseInt(digits.join(’’))},

string = ’"’ (~’"’ anything)*:chars ’"’
-> { type: ’string’, val: chars.join(’’)},

identifier = (letter | ’_’ | ’$’):chars
-> { type: ’id’, val: chars.join(’’)},

_ = space*

}

Figure A.3: PEG-Grammar for OMeta/JS

Program = Atom EOS

Atom = Pair
/ nil
/ number
/ string
/ identifier

Pair = ’(’ _ car:Atom _ ’.’ _ cdr:Atom _ ’)’
{return [car, cdr]}

nil = ’nil’
{return { type: ’nil’ }}

number = digits:[0-9]+
{return { type: ’num’, val: parseInt(digits.join(’’))}}

string = ’"’ chars:[^"]* ’"’
{return { type: ’string’, val: chars.join(’’)}}

identifier = chars:[a-zA-Z_$]+
{return { type: ’id’, val: chars.join(’’)}}

_ = [\t\n]*

EOS = !.

Figure A.4: PEG-Grammar for PEG.js

101

APPENDIX A. CODE SAMPLES

A.2 Visitor Based Implementation

var Translator = new JsonMLWalker({
Number: function(n) {
return n.value();

},
VarDecl: function(n) {
var bindings = this.walkAll(n.children());
return [’var ’, bindings.join(’, ’)].join(’’);

},
VarBinding: function(n) {
if(n.size() == 1) {
var init = walk(n.first())
return [n.name(), ’=’, init].join(’’);

}
return n.name();

}
});

Figure A.5: Manual implementation of a translator for variable declarations

102

A.3. RECURSIVE DESCENT LISP PARSER

A.3 Recursive Descent Lisp Parser

function Program() {
var result, next = peek().type;
if(next === ’(’) {
result = List();

} else if(isAtom(next)) {
result = Atom();

} else {
throw "Expected list or atom, got " + next + "at position" + pos();

}
consume(’eos’);
return result;

}

function List() {
var first, last;
consume(’(’);
first = ListItem();
consume(’.’);
last = ListItem();
consume(’)’);
return [first, last];

}

function ListItem() {
var result, next = peek().type;
if(next === ’(’) {
result = List();

} else if(isAtom(next)) {
result = Atom();

} else {
throw "Expected list or atom, got " + next + "at position" + pos();

}
return result;

}

function isAtom(type) {
return type === ’id’ || type === ’number’ || type === ’nil’;

}

function Atom() {
var result, next = peek();
if(next.type === ’id’) {
consume(’id’)
return next.value;

} else if(next.type === ’number’) {
consume(’number’);
return parseFloat(next.value);

} else {
throw "Expected id or atom, got " + next + "at position" + pos();

}
}

Figure A.6: Implementation of a recursive descent lisp parser

103

APPENDIX A. CODE SAMPLES

A.4 Implementation of Implicit Returns

EJSTranslator.helpers = {
implicit_return: function(body) {
var allowed = [’String’, ’Id’, ’Number’, ’Function’],

statements = body.children();
if(statements.length == 0)
return body;

var last = statements.pop(),
type = last.type();

// only implicitly return allowed values (only expressions)
// naming convention helps: Everything, that ends with Expr
if(allowed.indexOf(type) !== -1 || type.match(/Expr$/))
last = nodes.ReturnStmt(last);

statements.push(last);
return nodes.BlockStmt(statements);

}
}

Figure A.7: Helper-method of EJSTranslator to allow implicit returns

104

Appendix B

OMeta/JS

Contents

B.1 OMeta/JS - Required Files for Compilation 106

B.2 OMeta Base Grammar . 107

B.3 Object Pattern Matching in OMeta/JS 108

105

APPENDIX B. OMETA/JS

B.1 OMeta/JS - Required Files for Compilation

Filename Description

lib.js Basic library functions like string
buffering, stream objects and string
escaping

ometa-base.js The heart of OMeta/JS, the
implementation of the OMeta base object
all grammars inherit from

bs-js-compilers.js A parser and translator for a subset of
JavaScript, written in OMeta and
compiled to JavaScript

bs-ometa-compiler.js A parser and translator for
OMeta-language, also written in OMeta
and compiled to JavaScript

bs-ometa-optimizer.js Different optimizing translators, designed
to work on the parser output of
BSOMetaParser

bs-ometa-js-compiler.js Merges the parsers and translators for
JavaScript and OMeta (BSOMetaJSParser
and BSOMetaJSTranslator)

Table B.1: All files required for compilation of OMeta/JS grammars

106

B.2. OMETA BASE GRAMMAR

B.2 OMeta Base Grammar

ometa Base {

anything = !(this.bt.comsume())

pos = !(this.bt.pos()),

apply = :rule !(this._apply(rule)),

// derived rules
exactly :wanted = :got ?(wanted === got),

end = ~anything,

empty = !(true),

true = :obj ?(obj === true),

false = :obj ?(obj === false),

undefined = :obj ?(obj === undefined),

number = :obj ?(typeof obj === ’number’),

string = :obj ?(typeof obj === ’string’),

char = :obj ?(typeof obj === ’string’ && obj.length === 1),

range :from :to = char:x ?(from <= x && x <= to) -> x,

digit = range(’0’, ’9’),

lower = range(’a’, ’z’),

upper = range(’A’, ’Z’),

letter = lower | upper,

letterOrDigit = letter | digit

space = char:value ?(value.charCodeAt(0) <= 32),

spaces = space*,

token :t = spaces seq(t),

firstAndRest :first :rest = apply(first):f (apply(rest))*:r -> [f].concat(r),

listOf :rule :delim = apply(rule):f
(token(delim) apply(rule))*:r -> [f].concat(r)

| empty -> [],

fromTo :from :to = <seq(from) (~seq(to) char)* seq(to)>,

notLast :rule = apply(rule):r &(apply(rule)) -> r

}

Figure B.1: Grammar implementing methods from the OMeta-base

Please note that the rule range is not included in OMeta by default but has been added

to allow a more convenient implementation.

107

APPENDIX B. OMETA/JS

B.3 Object Pattern Matching in OMeta/JS

As seen in section 5.1 (Pattern Matching) it can be difficult to match an object in

OMeta/JS, though it is possible. For example some minor workarounds are necessary in

order to match person-objects like:

var person = {

name: "Alice",

age: 32

}

The name is just a combination of letters while the age should be any positive numerical

value. To allow matching these objects a grammar might be written as in figure B.2.

Despite the fact that this implementation is simplified and therefore does not work1

actually, it still looks more difficult than it is.

ometa Person {
identifier = <letter+>,
number = ^number:n ?(n > 0) -> n,
person = anything:p identifier(p.name) number(p.age) -> p

}

Figure B.2: Grammar to match person-objects

The call to identifier with one argument results in p.name to be pushed into the input

stream before the rule is applied. Since arguments are handled the exactly same way as

normal input (Actually they just are normal input) the rules number and identifier do

not need to expect special parameters. Consequently, the passed arguments are simply

used as upcoming input.

For special object-types like lists, characters, numbers and strings there are special

notations provided by OMeta/JS. On the other hand, JavaScript objects consisting of

properties cannot be matched that easy.

In addition there are three semantically equal ways to express a semantic action:

1. The arrow notation-> ...

2. The side-effect notation !(...)

3. The curly-brace notation {...}

While this might cause some problems with existing code it might be reasonable to drop

the third alternative in order to favor generic object matching expressions. JavaScript

objects mostly are created by using the object-literal syntax as seen in the introductory

example. This notation is close to the current curly-brace notation for semantic actions.

After removing support for the latter, a pattern matching for objects and their properties

could be incorporated as seen in figure B.4.

In this example the need for all semantic predicates is replaced by the alternative curly

brace notation. Because JavaScript programmers are already familiar with this syntax

1 The reason for this is the fact that p.name is not converted into an input-stream, so the characters cannot
be matched individually

108

B.3. OBJECT PATTERN MATCHING IN OMETA/JS

ometa Person {
identifier = <letter+>,
number = ^number:n ?(n > 0) -> n,
person = { name: identifier, age: number }

}

Figure B.3: Improved grammar to match person-objects, using generic object-pattern matching

the idea to use object-literals for pattern matching of objects seems obvious. Please

note that identifier and number are both applied in context of the OMeta-language,

not JavaScript. An OMeta/JS grammar to parse those expressions is trivial and can be

seen in figure B.4.

objectMatch = "{" listOf(#propertyMatch, ’,’) "}"
propertyMatch = identifier:n ":" ometaExpr:x

Figure B.4: Grammar to parse object-pattern matching expressions

Advanced Usage

To reveal the power of the novel object-pattern notation we might take a look at a slightly

more complex example grammar (fig. Enhanced grammar to match person-objects)

which matches only persons older then 21. Those persons optionally may contain a

second person as property partner.

ometa Person {
identifier = <letter+>,
older number:n = number:i ?(i > n) -> i,
person = { name: identifier, age: older(21), partner: person? }

}

Figure B.5: Enhanced grammar to match person-objects

The rule person in the above example combines the usage of rules, parametrized rules

and optional rules within a single object-pattern matching expression. In addition, it

invokes itself recursively inside of property-match partner. This recursive match has to

be optional - otherwise only endless partner-chains would be a valid match.

In personal communication with Alessandro Warth, the creator of OMeta, he fully agreed

with the idea of adding support for object pattern matching but was concerned about

breaking backwards compatibility.

109

Bibliography

[1] Aho, Alfred V. ; Lam, Monica S. ; Sethi, Ravi ; Ullman, Jeffrey D.: Compilers:

Principles, Techniques, and Tools (2nd Edition). Boston, MA, USA : Addison-Wesley

Longman Publishing Co., Inc., 2006. – ISBN 0321486811

[2] Ashkenas, Jeremy: List of languages that compile to JS. (Online; as of De-

cember 20th, 2011). – https://github.com/jashkenas/coffee-script/wiki/

List-of-languages-that-compile-to-JS

[3] Crockford, Douglas: JavaScript: The Good Parts. O’Reilly Media, Inc., 2008. – ISBN

0596517742

[4] Crockford, Douglas: Prototypal Inheritance in JavaScript. (Online; as of November

29th, 2011). 04 2008. – http://javascript.crockford.com/prototypal.html

[5] Ecma International: ECMAScript Language Specification, Standard ECMA-262 5th

Edition. 12 2009

[6] Eich, Brendan: Popularity. (Online; as of November 28th, 2011). 04 2008. –

http://brendaneich.com/2008/04/popularity

[7] Eich, Brendan: strawman:block_lambda_revival. (Online; as of January 17th,

2012). 01 2012. – http://wiki.ecmascript.org/doku.php?id=strawman:block_

lambda_revival

[8] Ford, Bryan: Packrat parsing:: simple, powerful, lazy, linear time, functional pearl.

In: SIGPLAN Not. 37 (2002), September, S. 36–47. – ISSN 0362-1340

[9] Ford, Bryan: Parsing expression grammars: a recognition-based syntactic founda-

tion. In: SIGPLAN Not. 39 (2004), January, S. 111–122. – ISSN 0362-1340

[10] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design Pat-

terns. Elements of Reusable Object-Oriented Software. Addison-Wesley Longman,

Amsterdam, 1994. – ISBN 0201633612

[11] Griffiths, David: altJS compile-to-JavaScript language list. (Online; as of December

20th, 2011). – http://altjs.org/

[12] Kaehler, Ted ; Warth, Alessandro: Running OMeta Parsers Backwards for Source

to Source Translation. (2008)

[13] Maffeis, Sergio ; Mitchell, John C. ; Taly, Ankur: Object Capabilities and Isolation

of Untrusted Web Applications. In: Proceedings of the 2010 IEEE Symposium on

Security and Privacy, 2010 (SP ’10), S. 125–140. – ISBN 978-0-7695-4035-1

111

https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://javascript.crockford.com/prototypal.html
http://brendaneich.com/2008/04/popularity
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://wiki.ecmascript.org/doku.php?id=strawman:block_lambda_revival
http://altjs.org/

BIBLIOGRAPHY

[14] Maffeis, Sergio ; Taly, Ankur: Language-Based Isolation of Untrusted JavaScript. In:

Proceedings of the 2009 22nd IEEE Computer Security Foundations Symposium,

2009, S. 77–91. – ISBN 978-0-7695-3712-2

[15] Mozilla Foundation: JavaScript Reference — Mozilla Developer Network. (Online;

as of November 29th, 2011). – https://developer.mozilla.org/en/JavaScript/

Reference

[16] Mozilla Foundation: Parser API - MDN. (Online; as of January 5th, 2012). –

https://developer.mozilla.org/en/SpiderMonkey/Parser_API

[17] Parr, T. J. ; Quong, R. W. ; Dietz, H. G.: The Use of Predicates in LL(k) And LR(k)

Parser Generators. 1993. – School of Electrical Engineering, Purdue University,

West Lafayette

[18] Parr, Terence: Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages. 1st. Pragmatic Bookshelf, 2009. –

ISBN 193435645X, 9781934356456

[19] Pepper, Peter: LR Parsing = Grammar Transformation + LL Parsing - Making LR

Parsing More Understandable And More Efficient. 1999

[20] Redziejowski, Roman R.: Some Aspects of Parsing Expression Grammar. In:

Fundam. Inf. 85 (2008), January, S. 441–451. – ISSN 0169-2968

[21] Reinke, Claus: Javascript development tools. (Online; as of December 20th, 2011].

– http://clausreinke.github.com/js-tools/resources.html

[22] Richards, Gregor ; Lebresne, Sylvain ; Burg, Brian ; Vitek, Jan: An analysis of

the dynamic behavior of JavaScript programs. In: SIGPLAN Not. 45 (2010), June,

S. 1–12. – ISSN 0362-1340

[23] Soller, Stephan: Concepts of the Lagrange Programming Language. Bachelorthesis,

Stuttgart Media University (HdM). 02 2012

[24] Soshnikov, Dmitry: ECMA-262-3 in detail. Chapter 1. Execution Contexts. (On-

line; as of February 14th, 2012). – http://dmitrysoshnikov.com/ecmascript/

chapter-1-execution-contexts

[25] Soshnikov, Dmitry: ECMA-262-5 in detail. Chapter 0. Introduction. (On-

line; as of February 14th, 2012). – http://dmitrysoshnikov.com/ecmascript/

es5-chapter-0-introduction

[26] Ungar, David ; Smith, Randall B.: SELF: The power of simplicity. In: LISP and

Symbolic Computation 4 (1991), S. 187–205. – 10.1007/BF01806105. – ISSN

0892-4635

[27] Warth, Alessandro: Experimenting with Programming Languages, University of

California, Dissertation, 2009

[28] Warth, Alessandro ; Douglass, James R. ; Millstein, Todd: Packrat parsers can

support left recursion. In: Proceedings of the 2008 ACM SIGPLAN symposium on

Partial evaluation and semantics-based program manipulation, 2008 (PEPM ’08),

S. 103–110. – ISBN 978-1-59593-977-7

112

https://developer.mozilla.org/en/JavaScript/Reference
https://developer.mozilla.org/en/JavaScript/Reference
https://developer.mozilla.org/en/SpiderMonkey/Parser_API
http://clausreinke.github.com/js-tools/resources.html
http://dmitrysoshnikov.com/ecmascript/chapter-1-execution-contexts
http://dmitrysoshnikov.com/ecmascript/chapter-1-execution-contexts
http://dmitrysoshnikov.com/ecmascript/es5-chapter-0-introduction
http://dmitrysoshnikov.com/ecmascript/es5-chapter-0-introduction

BIBLIOGRAPHY

[29] Wikipedia: Comparison of parser generators — Wikipedia, The Free Encyclopedia.

(Online; as of December 21th, 2011). 2012. – http://en.wikipedia.org/w/index.

php?title=Comparison_of_parser_generators&oldid=477079386

[30] Zakai, Alon: Emscripten: an LLVM-to-JavaScript compiler. In: Proceedings of the

ACM international conference companion on Object oriented programming systems

languages and applications companion, 2011 (SPLASH ’11), S. 301–312. – ISBN

978-1-4503-0942-4

[31] Zakas, Nicholas C.: High Performance JavaScript. 1st. USA : Yahoo! Press, 2010. –

ISBN 059680279X, 9780596802790

113

http://en.wikipedia.org/w/index.php?title=Comparison_of_parser_generators&oldid=477079386
http://en.wikipedia.org/w/index.php?title=Comparison_of_parser_generators&oldid=477079386

List of Figures

2.1 The compilation pipeline . 9

2.2 Production rules needed to recognize an input like var foo = 4 11

2.3 Parse trees . 11

2.4 Top-down / preorder and bottom-up / postorder traversal of a tree . . . 12

2.5 Overview of the compilation pipeline for var foo = 4 13

3.1 Production rules describing a subset of Lisp 17

3.2 Example implementation of the production rule Program 17

3.3 Example implementation of the production rule List 17

3.4 Grammar describing variable declarations and definitions 20

3.5 Backtracking implementation for production Statement 20

3.6 Memoization implementation for rule Definition 21

3.7 Parsing expression grammar that recognizes a subset of Lisp 23

5.1 Sample grammar which can be used to match JavaScript-identifiers . . 32

5.2 The two grammar objects ID and OMeta 33

5.3 A sample grammar to match decimal numbers, starting with rule number 34

5.4 OMeta/JS grammar to convert prefix to infix notation 35

5.5 A grammar to match numbers with alternating even and odd digits . . 36

5.6 A grammar to match decimals, using semantic expressions 37

5.7 Grammar using parametrized rules . 38

5.8 Lexical analysis inside a parsing-grammar 38

5.9 Result of parsing the input “(plus 4 (minus 8 6)” 39

5.10 Allowed usage of JavaScript within a OMeta grammar 40

5.11 Grammar that matches decimal and hexadecimal numbers 41

5.12 Grammar inheritance in OMeta/JS . 41

5.13 Example usage of foreign rules to embed SQL within JavaScript strings 42

115

LIST OF FIGURES

5.14 Using foreign rules and grammar inheritance 43

5.15 Contents of ometa.html . 43

5.16 Using stateful pattern matching to create a string table 45

6.1 Dependencies of the components within OMeta/JS 50

6.2 Ometa grammar representing an extract of the ES5 specification 52

6.3 Restructured version of the ES5 extract 53

6.4 AST-format as interfaces between compilation stages 54

6.5 Example of three AST-formats representing var foo = 4 54

6.6 Implementation of a translator for variable declarations based on OMeta/JS

pattern matching facilities . 58

6.7 Implementation of a translator for variable declarations utilizing a parent

JsonMLWalker-grammar . 58

6.8 Signature of the node constructor factory 59

6.9 Creating a constructor for nodes with the type Number 60

6.10 Using node-methods to refine the matching of rule Number 61

6.11 Extending the language using syntax directed translations 61

6.12 Extending the language by creating an ES5 AST 62

6.13 Extending the language by creating an intermediate ASTEJS format . . 62

6.14 Extending the language by additionally translating ASTEJS to ASTES5 63

6.15 Adding loop-statements to JavaScript 64

6.16 Using the EJSParser to make use of the new loop-statement 64

6.17 Packages from the architectural point-of-view 64

6.18 Usage pattern of standalone grammar modules 65

6.19 Example of a parser that utilizes the jsonml-package 67

6.20 Continuation of 6.19. Translator using the jsonml-package 67

6.21 Scaffold of the EJSParser module . 71

6.22 Scaffold of the EJS-nodes module . 71

6.23 Scaffold of the EJSTranslator module . 72

6.24 Packages as seen from the grammar point-of-view 73

7.1 Forcing scope in JavaScript by immediately calling an anonymous function 76

7.2 Using arguments to introduce new variables 77

7.3 Closures preserve the lexical context of definition 77

7.4 Usage of revealing module pattern . 78

7.5 Forcing the creation of a new scope . 78

116

LIST OF FIGURES

7.6 Example usage of the scope-forcing operator 79

7.7 Using the scope-forcing operator to implement the revealing module

pattern . 79

7.8 Extending the parser to allow scope forcing 79

7.9 Adding a new node-type to represent scope-expressions 80

7.10 Extending the translator to convert scope expressions into wrapping

function calls . 80

7.11 Three different implementations of string-substitution 81

7.12 Resolving the string-substitution of EJS to JavaScript 81

7.13 Extending the parser to allow string-expressions 82

7.14 Adding a new node-type to represent string-expressions 82

7.15 Extending the translator to “desugar” string expressions to arrays . . . 82

7.16 Extending the parser to allow the new function expressions 85

7.17 Adding a new node-type to represent lambda-expressions 85

7.18 Extending the translator to convert lambda-expressions into functions . 86

7.19 A prototype-link in JavaScript can be created by an intermediate constructor-

function . 88

7.20 Object.create is a shorter solution to create a prototypal-link between

two objects . 88

7.21 Simplified implementation of the new-operator using Object.create . . 88

7.22 The definition of classes in Ext.JS and MooTools 89

7.23 Class inheritance in Ext.JS and MooTools 90

7.24 Unified syntax for class definition . 90

7.25 Extending the parser to allow class-statements 91

7.26 Creation of the node-constructor for class-statements 91

7.27 Compilation result for class Employee 92

7.28 Mapping the class-definition to Ext.JS 92

7.29 Mapping the class-definition to MooTools 92

7.30 Implementation of the translator for class-statements 93

A.1 PEG-Grammar for Canopy . 100

A.2 PEG-Grammar for Language.js . 100

A.3 PEG-Grammar for OMeta/JS . 101

A.4 PEG-Grammar for PEG.js . 101

A.5 Manual implementation of a translator for variable declarations 102

A.6 Implementation of a recursive descent lisp parser 103

117

LIST OF FIGURES

A.7 Helper-method of EJSTranslator to allow implicit returns 104

B.1 Grammar implementing methods from the OMeta-base 107

B.2 Grammar to match person-objects . 108

B.3 Improved grammar to match person-objects, using generic object-pattern

matching . 109

B.4 Grammar to parse object-pattern matching expressions 109

B.5 Enhanced grammar to match person-objects 109

118

List of Tables

3.1 Ways to build parsers . 16

3.2 Operators for parsing expression grammars 22

4.1 List of Parser generators with JavaScript target written in JavaScript . . . 26

4.2 Comparison of PEG-Parser Generators . 30

5.1 Syntactical differences from OMeta to original PEG 33

5.2 Syntax for matching different types of objects 34

5.3 Summary of OMeta syntax, additional to PEG operators 37

5.4 Semantics of string-literals depending on the context 40

6.1 Comparison of the different AST data formats 55

6.2 Excerpt of methods which are added to each node 60

6.3 Interface of the ometa-package . 65

6.4 Interface of the jsonml-package . 66

6.5 Interface of the es5-package . 68

6.6 Tested Libraries . 69

6.7 Results of applying the ECMAScript test suite 69

6.8 Interface of the ejs-package . 70

B.1 All files required for compilation of OMeta/JS grammars 106

119

Abbreviations

API Application Programming Interface

AST Abstract Syntax Tree

BNF Backus-Naur Form

CFG Context Free Grammar

DOM Document Object Model

EBNF Extended Backus-Naur Form

EJS Extended JS or Example JS

ES5 ECMAScript edition 5

JIT Just in Time

JS JavaScript

JSON JavaScript Object Notation

JsonML JSON Markup Language

LLVM Low Level Virtual Machine

OO Object Orientation

PEG Parsing Expression Grammar

RE Regular Expressions

SQL Structured Query Language

121

LIST OF TABLES

122

	Introduction
	JavaScript
	Outside of the Browser
	JavaScript as a Standard
	Problems and Solutions
	Compiled Language Extensions

	Scope of this Thesis

	The Compilation Process
	Lexical Analysis
	Syntactical Analysis
	Tree Transformations
	Code Generation
	Summary

	A little more about Parsers
	Recursive Decent Parsers
	Extending Recursive Decent Parsers
	Backtracking
	Memoization
	Left Recursion
	Parsing Expression Grammars
	Semantic Predicates

	Summary

	Existing Parser Generators
	Comparison of PEG-Parser Generators
	Concepts
	Documentation
	Error Reporting
	Extensibility
	Conclusion

	OMeta
	Writing Grammars
	Differences to PEG
	Pattern Matching
	Semantic Predicates
	Semantic Actions
	Parametrized Rules
	Higher-Order Rules
	It's all about Context: OMeta or JavaScript?
	Grammar Inheritance
	Foreign Rule Invocation

	Using OMeta/JS
	Usage of OMeta Grammar Objects
	Stateful Pattern Matching

	Summary

	Extending JavaScript
	Five Steps to Create a Language Extension
	First Step: Set up the Environment
	Second Step: Write an ES5 Grammar
	Third Step: Specify the Format of the AST
	Fourth Step: Traverse the AST and Generate Code
	Fifth Step: Start Extending

	The Architecture
	The OMeta Package
	The JsonML Package
	The ES5 Package
	The EJS Package

	The Grammars
	Summary

	Usecase: Example Extension
	Scope Forcing with !{}
	Introducing a new Syntax
	Implementing the Syntax

	The Substitution Operator ``#{}``
	Introducing a new Syntax
	Implementing the Syntax

	Lambda Expressions {||}
	Introducing a new Syntax
	Implementing the Syntax

	Classes and Object Orientation
	Introducing a new Syntax
	Implementing the Syntax

	Summary

	Conclusions
	Related Work
	Future Work

	Code Samples
	PEG-Grammars
	Visitor Based Implementation
	Recursive Descent Lisp Parser
	Implementation of Implicit Returns

	OMeta/JS
	OMeta/JS - Required Files for Compilation
	OMeta Base Grammar
	Object Pattern Matching in OMeta/JS

	Bibliography
	List of Figures
	List of Tables
	Abbreviations

