
Chapter 1

OMeta

Writing parsers by hand can be quite tedious and error-prone, especially when imple-

menting a language specification that still evolves or when experimenting with novel

language features. Small changes in a grammar may result in complex changes of the

parser. Thus, parser-generators are often used to automate this process. As we have

seen in chapter ?? on page ??, a compiler commonly consists not only of a parser but

also of a lexer, several translators and finally a code-generator - all of which being

created with different tools or frameworks and maybe even using different languages.

Alessandro Warth created OMeta to unify all of those tools in order to flatten the learning

curve and to make experimenting with languages more easy [3].

The goal of this chapter is to provide a solid understanding of how to work with OMeta

and specially OMeta/JS. Of course Warth’s thesis [3] is a great source for background

information and this chapter may be seen as a restructured, updated and enriched form

of [3, chapter 2].

OMeta is a general purpose pattern matching language based on parsing expression

grammars (abbr. PEG). As we have seen PEGs unite the flexibility of CFGs and REs and

thereby remove the separation between the process of lexical analysis and parsing. They

usually operate on characters as terminals and hence can only be used to match strings.

OMeta circumvents this limitation by allowing every object of the host-language to be a

terminal, thus making it possible to use OMeta in almost every step of the compilation

process. It also offers many extensions to PEG like parametrized rules, higher order

rules and grammar inheritance described in the remainder of this chapter.

Working with OMeta can be split into three single steps:

1. Write your grammar in OMeta-language

2. Set up the OMeta-compiler and compile the grammar

3. Use the resulting grammar-object to match and translate input-streams

OMeta uses memoization to increase performance and therefore reduces the drawbacks

resulting from backtracking (Also see [2] and chapter ?? on page ??). In addition, it

allows the use of left-recursive rules by modifying the memoization algorithm (See [4]

and [3, chapter 3]).
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CHAPTER 1. OMETA

OMeta/JS

Being a generic language for grammar-description, OMeta has been implemented in

many different host languages. In the remainder we will describe Alessandro Warth’s

reference implementation written in JavaScript (called OMeta/JS1), as it is close to the

one used in the remainder of this thesis. Some examples of this chapter are taken from

the ES5Parser presented in section ?? on page ?? (The parser itself is based on the

JavaScript-parser delivered with OMeta/JS2).

In order to get an idea of how an OMeta grammar looks like, figure 1.1 shows a grammar

with three simple rules, each separated by a comma. This simplified grammar matches

JavaScript identifiers like foobar, $1 and _global, always starting with rule identifier.

ometa ID {
identifier = nameFirst namePart*,
nameFirst = letter | ’$’ | ’_’,
namePart = nameFirst | digit

}

Figure 1.1: Sample grammar which can be used to match JavaScript-identifiers

Here the structure of every OMeta gets visible. Since OMeta/JS is a combination of the

OMeta-language and JavaScript the keyword ometa is used to announce that a following

section is written in OMeta. After the introductory keyword the name of the OMeta

grammar is expected before it’s implementation can take place inside of the following

block. Compiling this grammar to JavaScript results in a JavaScript-object ID containing

three methods to match the specified rules. Since no parent-grammar has been specified

OMeta assumes that it’s base grammar OMeta should be the parent. Hence, a prototypal

link to an object representing this base grammar is added as depicted in figure 1.2. Here

we can get a quick idea of how OMeta/JS models the inheritance of different grammars

by using the prototype-chain.

[[Prototype]]

ID

nameFirst

namePart

identifier

letter

OMeta

digit

exactly

Figure 1.2: The two grammar objects ID and OMeta

1.1 Writing Grammars

The most important part of implementing a parser by the means of a parser generator

is to write a grammar. To accomplish this task we will start off by taking a look at the

different tools and syntax elements provided by OMeta.

1The source of Alessandro’s OMeta/JS implementation is available at github https://github.com/
alexwarth/ometa-js

2Information about OMeta and OMeta/JS as well as an interactive Workspace can be found at http:
//www.tinlizzie.org/ometa/
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1.1. WRITING GRAMMARS

1.1.1 Differences to PEG

OMeta supports almost all default operators that can be found in PEG. Nevertheless,

new features have been introduced which conflict syntactically with existing operators.

Table 1.1 illustrates the differences to the syntax as it is known from PEG (Also see

original table ?? on page ??).

expra | exprb A pipe is used instead of a slash to express prioritized
choice

anything Instead of a single dot the rule anything is used to con-
sume the next input without matching it

∼ expr Negative lookahead uses tilde-character instead of an
exclamation mark

"rule" Shorthand for application of the rule token("rule")

Table 1.1: Syntactical differences from OMeta to original PEG

Character classes as they are known from regular expressions and adopted by PEG do

not have an equivalent syntax in OMeta. In order to allow the pattern matching of lists

(as it can be seen in section 1.1.2), brackets had to be reserved and thus could not be

used to match character classes. Regardless of the missing syntax it is still possible in

OMeta/JS to implement a character range by using parametrized rules. For example the

class [a-z] can be matched by the rule range(’a’, ’z’)3.

The use of basic PEG operators within OMeta is demonstrated in figure 1.3.

ometa Numbers {
number = decimal,
decimal = ’-’? decimalInt+ (’.’ digit+)? expPart?

| ’-’? (’.’ digit+) expPart?,
decimalInt = ’0’ | (~’0’ digit) digit*,
expPart = (’e’ | ’E’) (’+’ | ’-’)? digit+

}

Figure 1.3: A sample grammar to match decimal numbers, starting with rule number

As already known from PEG, the lookahead operators assure whether the next input-

token does (& positive) or does not (~ negative) match the given expression. It is

important to note that thereby no input is consumed. In this example it gets visible

how the negative lookahead operator is used to exclude the character ’0’ which would

otherwise be matched by the rule digit. The starting point for this grammar is the

rule number. The grammar matches all allowed decimal numbers like -3, 4.7, .6 and

6.18e-1.

1.1.2 Pattern Matching

In contrast to PEG which only allows to match a stream of characters, OMeta is able to

match a stream of arbitrary host-language objects[3]. There are quite a few types of

3The implementation of range can be found in appendix 1.4 on page 16
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CHAPTER 1. OMETA

objects in JavaScript for which OMeta provides a dedicated syntax as it can be seen in

table 1.2.

’c’ Single characters can be matched using the character
literal notation.

“string” Matches a sequence of characters (Please note, that
the string is delimited by two backticks on the left
and two single quotes on the right hand side)

1337 Numbers can be matched natively

[char ’o’ ’o’] The list notation allows matching a sequence of arbi-
trary objects inside of a list.

Table 1.2: Syntax for matching different types of objects

Like with PEG, the most basic terminals a parser may recognize are single characters and

sequences of characters. When matching a string like “var foo = 4” OMeta destructs

this string into it’s single characters in order to form a stream:

[’v’, ’a’, ’r’, ’ ’, ’f’, ’o’, ’o’, ’ ’, ’=’, ’ ’, ’4’]

Here it gets visible why every single character has to be matched separately. If a

sequence of characters like var is expected this has to be denoted explicitly by using the

character sequence notation “var”. In fact, this notation is semantically equivalent to

’v’ ’a’ ’r’.

In contrast to parsers, a translator has to work on structures. For this task OMeta

provides a notation that can be used to match lists. Consider the task of converting a

prefix notation, as it is used by Lisp, to be infix. Given the following input

[’+’, 5, [’-’, 3, 8]]

a grammar has to recursively match the contents of the lists. Like already said, this can

be performed by using the list-notation as seen in figure 1.4.

ometa PreToInfix {
list = [operator:op content:first content:second] -> [first, op, second],
content = list | number,
operator = ’+’ | ’-’ | ’*’ | ’/’

}

Figure 1.4: OMeta/JS grammar to convert prefix to infix notation

Please note that in contrast to JavaScript arrays, the elements inside of the list-notation

are separated by whitespaces and not commas. To transform the output of rule list,

semantic actions are used which will be presented in subsequent sections.

Generally speaking, every JavaScript object may be matched by utilizing predicates. For

example the rule

expressions = anything:n ?(n.name == expr)
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1.1. WRITING GRAMMARS

can be used to match objects like { name: “expr”, contents: [] }. Until now,

there is no special pattern matching syntax for generic objects.

1.1.3 Semantic Predicates

Since OMeta/JS is an aggregation of OMeta and JavaScript, we can use JavaScript inside

of semantic predicates to refine the matching process. The host-language expression

inside of a semantic predicate should evaluate to a boolean value. If the resulting value

is falsy4, the matching of the current rule is assumed to be failed and therefore aborted,

whereas a truthy value leads to a continuation of the matching-process. Figure 1.5

illustrates a grammar using predicates to differ between even and odd digits in order to

match numbers like 381496. It gets visible that the prefix-operator ? is followed by a

JavaScript expression which may, but don’t necessarily has to be wrapped in parenthesis.

function even(digit) {
return parseInt(digit) % 2 === 0;

}
ometa EvenOdd {
even = digit:d ?even(d),
odd = digit:d ?( !even(d) ),
number = <(even odd)+ even?

| even
>:n -> parseInt(n)

}

Figure 1.5: A grammar to match numbers with alternating even and odd digits

Of course the function even could have also been inlined in the semantic predicates like:

even = digit:d ?(parseInt(d) % 2 === 0)

In OMeta, the result of the last expression within a rule always is used as result of the

rule. Since the semantic predicate returns a boolean value, the result of the rules even

and odd is this boolean value and not the digit itself. To bypass this problem the capture

operator <...> is used that records all input which is matched by the enclosed rules.

Another solution to this problem would have been to add a semantic action at the end of

each rule:

even = digit:d ?even(d) -> d,

odd = digit:d ?( !even(d) ) -> d,

Semantic predicates also can be used to include context information in matching deci-

sions. For example it might be checked whether a variable, to which a value is about to

be bound, has been declared before hand.

1.1.4 Semantic Actions

Usually, it is the job of a grammar to decide whether or not an input can be matched

using the given rules. Although this is a useful information, we often need to work

4To discriminate between the boolean value false and all other values that behave equally when used in
conditions the terminology falsy (or likewise truthy) is used (See Douglas Crockford [1]). Falsy values include
for example false, undefined, null the empty string “” and 0.
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CHAPTER 1. OMETA

with the recognized input in order to extract information or to modify it. For example

a stream of strings may be transformed into an intermediate representation like an

abstract syntax tree. The other way around, an existing AST can be used as input to a

translator to be converted to code again. For this purpose the output of each rule may

be transformed using so called semantic actions.

There are three different ways to express semantic actions in OMeta. The first one,

which is mostly used to transform the output of a rule, is denoted by the arrow-operator

->. It may appear after each expression and is delimited by either a comma (end of

rule), pipe-character (end of choice) or closing curly brace (end of grammar). Hence,

it’s precedence is higher than a choice, but lower than a sequence. If a programmer

wants to define a semantic action to manipulate the output of a choice-expression as a

whole and not for a individual option, the choice has to be wrapped in parenthesis. The

implementation of a semantic action can be any expression of the host language.

Again, if no semantic action is given for a rule, the result of the last applied expression

is used without any transformation.

ometa Numbers {
number = decimal,
decimal = <’-’? decimalInt+ (’.’ digit+)? expPart?>:n -> parseFloat(n)

| <’-’? (’.’ digit+) expPart?>:n -> parseFloat(n),
decimalInt = ’0’ | (~’0’ digit) digit*,
expPart = (’e’ | ’E’) (’+’ | ’-’)? digit+

}

Figure 1.6: A grammar to match decimals, using semantic expressions

The grammar in figure 1.6 is a enhancement of the grammar as seen in figure 1.3.

Semantic actions are used in rule decimal on the right-hand side of every choice to call

the JavaScript function parseFloat(n). But where does the identifier n come from and

to which value is it bound? The capture operator, denoted by < ... > captures the

input used to match the inner expressions. It is very useful if we want to work with the

consumed input independently of any transformations performed in the descendant rules.

Using the property assignment operator lhsExpr:id the result of evaluating the left-

hand side expression is bound to the identifier, which can be accessed in every associated

host-language code like semantic actions, predicates and calls to parametrized rules.

When trying to find out in which scope an identifier can be used, we have to recall that

every rule is compiled to it’s own JavaScript function. Thus, every variable defined by

the assignment operator can be accessed only within the corresponding rule.

Table 1.3 gives an overview over the different syntactical extensions OMeta offers.

The first three entries of the table all represent semantic actions. They only differ in

their syntax. Semantic actions are executed during the matching process according

to their position within a rule. The side-effects created by semantic actions are not

automatically undone by OMeta if a rule does not match in the end. The behavior of

creating side-effects is visually emphasized by the exclamation prefix notation.
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1.1. WRITING GRAMMARS

expr-> host_expr semantic action, transforms the result of expr, us-
ing an expression in the host language

{ host_expr } semantic action, equivalent to the above except
that it is delimited by }

!host_expr semantic action, equivalent to the above. Com-
monly used in combination with parenthesis like !(
host_expr )

?host_expr semantic predicate, boolean expression evaluated
while matching

rule(expr) parametrized rules, expr is prepended to the input
stream before applying rule

^rule super-call operator, applies rule of the parent gram-
mar object

Foreign.rule call of a rule, residing in a foreign grammar

<expr> capture-operator, memorizes and returns all input
consumed by expr

@<expr> index-capture-operator, returns an object that con-
tains the indexes bordering the consumed input
(e.g. { fromIdx: 3, toIdx: 7 })

expr:id assignment operator, binds the result of expr to a
rule-local variable id

Table 1.3: Summary of OMeta syntax, additional to PEG operators

1.1.5 Parametrized Rules

OMeta adds even more flexibility to the grammar by allowing the use of arguments on

rules, so called parametrized rules. Those rules behave basically the same as the one

without arguments. The passed arguments are simply prepended to the input stream,

before the rule is matched. Consequently, parametrized rules also support pattern

matching on their parameters. Thus, the notation rule :a :b is only shorthand for rule

anything:a anything:b.

Figure 1.7 shows an extension to the above grammar EvenOdd. Instead of defining

multiple rules, one for each digit-type, there is only one parametrized rule.

ometa EvenOdd {
even :yes = digit:d ?(yes === even(digit)),
number = <(even(true) even(false))+ even(true)?

| even(true)
>:n -> parseInt(n)

}

Figure 1.7: Grammar using parametrized rules

It is important to point out that the call-arguments of parametrized rules can be any
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CHAPTER 1. OMETA

ometa Lisp {
// Lexer
identifier = <letter+>:id -> { type: "Id", value: id },
number = <digit+>:num -> { type: "Number", value: parseInt(num) },
punctuator = ’(’ | ’)’ |’.’ | ’,’,

token :tt = spaces ( punctuator:t ?(t == tt) -> t
| (identifier | number):t ?(t.type == tt) -> t
),

// Parser
list = token("(") (atom | list)+:cs token(")") -> { type: "List", content: cs },
atom = token("Id") | token("Number")

}

Figure 1.8: Lexical analysis inside a parsing-grammar

valid expressions of the host language. The result of the expression is than bound to the

parameter of the invoked parametrized rule. In the first call to even the JavaScript value

true is bound to the parameter yes and therefore further can be used in all locations

where host-language is allowed.

Another example for parametrized rules is the built-in function token(tok). As previously

stated, OMeta can be used as “one shoe fit’s it all“ solution for the diverse compilation

stages. The token method helps to combine “scannerful” and “scannerless” parsing[3].

The stage of lexical analysis, usually performed by a lexer, can be included in the

parser-grammar as seen in figure 1.8.

Starting with rule list the grammar can be used to parse simple Lisp-like lists. The

given input “(plus 4 (minus 8 6)” results in the tree consisting of objects, as seen in

figure 1.9. Every object has one property type to specify it’s kind. Additionally identifier

and numbers save their values in the property value. Lists in turn store the contained

list items in the property content.

{ type: "List", content: [
{ type: "Id", value: "plus" },
{ type: "Number", value: 4 },
{ type: "List", content: [
{ type: "Id", value: "minus" },
{ type: "Number", value: 8 },
{ type: "Number", value: 6 }]

}]
}

Figure 1.9: Result of parsing the input “(plus 4 (minus 8 6)”

As it gets clearly visible the lexer is included directly in the parser grammar. Every time

a token needs to be scanned the method token is invoked, providing the required type of

token as a string. OMeta provides a special syntax for this kind of invocation since it is

used pretty often. Instead of writing token(“Id”) the programmer might simply use a

shorthand syntax “Id”. At first glance this might easily be mixed up with the matching of

strings. Hence, it is important to keep in mind that strings are broken down to character

sequences and therefore the syntax “string” has to be used.

Using the shorthand notation for token the parser rules may be rewritten as
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1.1. WRITING GRAMMARS

list = "(" (atom | list)+:cs ")" -> { type: "List", content: cs },

atom = "Id" | "Number"

which is much easier to read and write.

1.1.6 Higher-Order Rules

Among the methods of the OMeta base grammar the rule apply(rule_name) can be

found, which expects rule_name to be a string and invokes the rule in place. Therefore, a

call to apply(“myrule”) is identical to myrule. Equipped with apply and parametrized

rules it is possible to create higher order rules by passing rule-names as arguments. The

higher order rule itself can in turn make use of apply. In OMeta some built-in functions

are implemented that way. In appendix 1.4 a pseudo implementation of the base grammar

with all of it’s built-in rules can be found. For example let’s analyze listOf(rule, sep)

that can be used to match a list of items. The internal implementation is close to:

listOf :rule :sep = apply(rule):f (token(sep) apply(rule)):r* -> [f].concat(r)

| empty -> []

Each item has to match rule and is delimited by the provided separator. Here we can

see how the given rule is applied at all positions where a matching item is expected.

Considering the grammar of figure 1.6, a call to listOf(#decimal, ’,’) could match

an input string like “1.5, 4, -8”. The usage of the dubious literal #decimal as first

argument will be explained in the following section.

1.1.7 It’s all about Context: OMeta or JavaScript?

To write comprehensive grammars in OMeta it is necessary to distinguish between

the two languages we are working with. Firstly the OMeta language and secondly

the underlying host-language: JavaScript. Outside of a grammar definition only host-

language code is valid. For example we are not able to write OMeta rules outside of a

grammar.

// here only JavaScript can be written
ometa Grammar {
// only OMeta is allowed right here
rule :a :b = { ... } otherRule !( ... ) -> ..., // semantic action
otherRule = rule:c ?( ... ), // semantic predicate
start = rule(..., ...) "rule" apply(...) // parametrized rule

}
// again: just JavaScript is allowed

Figure 1.10: Allowed usage of JavaScript within a OMeta grammar

The other way around, OMeta is our primary language inside of a grammar definition

as it is illustrated in figure 1.10. Here we can see that host-language code is valid

outside of a grammar ( ... ometa Grammar {} ...), inside of semantic predicates

(?(...)), inside of semantic actions ({...}, !(...)and -> ...) and inside the call of
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parametrized rules (rule(...)). At every occurrence of an ellipsis we might implement

a JavaScript expression5.

However, there are some ambiguous notations regarding strings. For example, as we

have seen, the notation “attention” in OMeta-language context is not a string. It is

equivalent to calling the parametrized function token and passing the JavaScript string

value attention as first argument. In contrast, appearing in host-language context

“attention” represents a string. In order to prevent this confusing usage of double

quoted string, the word literal (e.g. #singleWord) has been introduced to host-language

context. Table 1.4 provides an overview of string literals and their semantics depending

on the context of use.

# " " ’ ’ “ ”

OMeta - token(...) char char-sequence

JavaScript single word string string string -

Table 1.4: Semantics of string-literals depending on the context

All host-language sections inside of a grammar are compiled into individual functions

which are called in the context of the grammar-object. Due to this fact, the binding of

this in these sections is always the grammar-object itself.

1.1.8 Grammar Inheritance

One of the most important features in OMeta is the reuse and composition of grammars.

Grammars can make use of other grammars in two ways. Firstly, a grammar can inherit

from another. This is expressed by using the inheritance operator <: followed by the

grammar to inherit from. If no parent is given, the grammar implicitly inherits from

the OMeta base grammar which is stored in the object OMeta. Thus writing grammar

Numbers {} and grammar Numbers <: OMeta {} is equivalent. Of course the parent

grammar needs to be compiled first before it can be extended.

For example let’s extend the number grammar to additionally allow hexadecimal numbers

to be matched. The implementation of this extension can be seen in figure 1.11.

ometa HexNumbers <: Numbers {
range :from :to = char:x ?(from <= x && x <= to) -> x,
hexDigit = digit | range(’a’, ’f’) | range(’A’, ’F’),
hex = ‘‘0x’’ <hexDigit+>:ds -> parseInt(ds, 16),
number = hex | ^number

}

Figure 1.11: Grammar that matches decimal and hexadecimal numbers

The function range is introduced to check for character ranges. The implementation

is identical to the one in appendix 1.4. It is realized as a parametrized rule expecting

two parameters - the lower as well as the upper boundary. Rule hex indirectly uses this

5In the first case all JavaScript statements are also allowed
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1.1. WRITING GRAMMARS

function to match an arbitrary number of hex digits and returns the decimal value6. The

last rule number matches either the rule hex or ^number. The latter is a super-call to the

parent-grammar applying rule number. In general, if a rule isn’t defined in the grammar,

the lookup automatically continues recursively with the parent-grammar. Given the

situation that a rule with the exact same name is defined in the child grammar, just

like number, this rule is preferred and shadows the implementation of it’s parent. This

behavior is similar to the one found in classical object orientation. Nevertheless, it is

still possible to access the parent-rule by using the super-call operator. Figure 1.12

illustrates how OMeta/JS uses the prototypal chain to realize the inheritance of the

different grammars.

[[Prototype]]

number

hex

hexDigit

number

Numbers

decimal

decimalInt

letter

OMeta

digit

exactly

HexNumbers

expPartrange

[[Prototype]]

Figure 1.12: Grammar inheritance in OMeta/JS

Another example for using this inheritance-mechanism is to create debugging rules:

log :rule = ^pos:p <apply(rule)>:t !console.log("pos "+p+":", t) -> t,

next = ^pos:p &anything:t !console.log("pos "+p+":", t)

The first rule log is a higher order rule expecting the rule name to apply. It can be used

to log the position and input consumed by a special rule. The second rule next is a little

easier to understand. A positive lookahead is used to log the position and the upcoming

element of the input-stream without consuming it.

Since at the end of the inheritance-chain every grammar implicitly extends OMeta, it is

important to know which rules are provided by this special grammar-object. For this

purpose a pseudo implementation of all rules the base object offers can be found in

appendix appendix 1.4.

1.1.9 Foreign Rule Invocation

Building on top of existing grammars, the mechanism of inheritance is a big advance to

the classical way of combining two grammars: Copying both grammars into one file and

hope there are no name-clashes. But single inheritance fails when we want to include

two or more grammars into a new one. This is when it comes to foreign rules.

Given the example we want to implement a syntax highlighter that automatically detects

SQL strings within another language (for instance JavaScript). Equipped with the two

grammars JavaScript and SQL this task can be accomplished pretty easy as it gets

visible in figure 1.13.

In this example we are extending the rule string to also match SQL strings. If the

contents of the string cannot be recognized by the foreign rule SQL.statement, the

6The second argument of the JavaScript function call parseInt(ds, 16) is the radix parameter, specifying
that the hexadecimal system should be used for parsing
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CHAPTER 1. OMETA

ometa Highlighter <: JavaScript {
string = ’"’ SQL.statement:c ’"’ -> { type: "SQLString", content: c }

| ^string
}

Figure 1.13: Example usage of foreign rules to embed SQL within JavaScript strings

rule falls back to the parent implementation of grammar JavaScript. This example

illustrates how rules of other grammar objects can just be applied as if they where part

of the current grammar. Nevertheless, in contrast to grammar inheritance, applying

foreign rules results in a change of contexts. The input stream is just borrowed by the

foreign rule and handed back when the matching has been finished [3]. Returning the

flow of control is performed anyway, independent of success or error.

This procedure can be compared to switch the track for matching and continue on this

track as far as we can. After the matching on that track is finished we change the lane

again and return to the original grammar. Of course, just like every own rule, the track

can always be a dead end.

[[Prototype]]

string string

JavaScript OMetaHighlighter

[[Prototype]]

statement

SQL

[[Prototype]]

Figure 1.14: Using foreign rules and grammar inheritance

Figure 1.14 illustrates the dependencies of the different grammars involved in the

previous example.

Again, it is an important requirement that all grammar objects have to be loaded in the

same environment before they may be used for inheritance or foreign rule invocation.

1.2 Using OMeta/JS

In the previous section we have learned how to write sophisticated OMeta/JS grammars.

In order to be able to use the grammars in combination with the reference implemen-

tation7 we have to do some preparations. The first step is to load all files required to

compile the grammars. A list of those files, together with a short description, can be

found in appendix ?? on page ??.

Due to the large amount of files it appears reasonable to concatenate them to one file,

which we may call ometajs.js in the remainder of this section. After all, in order to use

OMeta/JS the most important three objects implemented in those files are:

OMeta The base grammar object every grammar inherits from.

7http://github.com/alexwarth/ometa-js
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1.2. USING OMETA/JS

BSOMetaJSParser This grammar object can be used to parse OMeta/JS grammars, start-

ing with the rule topLevel.

BSOMetaJSTranslator This grammar object can be used to compile the tree, produced

by BSOMetaJSParser, to JavaScript code. The starting rule for this grammar is

trans.

Since OMeta/JS is implemented in JavaScript we may use it inside of a browser environ-

ment. In the following, we will set up OMeta in a few steps. For this purpose, we create

a html file called ometa.html with the contents of figure 1.15.

<!DOCTYPE html>
<html>
<head>
<title>OMeta/JS</title>
<script src="ometajs.js"></script>
<script language="OMetaJS" id="grammar"> ... </script>
<script>
...

</script>
</head>
<body></body>

</html>

Figure 1.15: Contents of ometa.html

The necessary files to compile and execute OMeta/JS grammars are included in the first

script-tag. Inside of the second script-tag with attribute language set to OMetaJS we

may now add any OMeta/JS grammar like the Numbers grammar, as seen in figure 1.6.

The setup of the compilation process, as described in the following, takes place within

the third script-tag. First of all we need to retrieve the textual source of our grammar

definition. This can be easily achieved by requesting the script-tag and reading property

innerHTML.

var source = document.getElementById("grammar").innerHTML;

The next step is to parse the source, using BSOmetaJSParser which is already loaded

into the global namespace by including ometajs.js. Like every OMeta object the parser

provides the two methods match and matchAll. At this point only the latter one is of

significance.

matchAll(input, rule, args?, failure?)

The function requires at least two arguments. The first argument, representing the

input which is about to be matched by the grammar, has to be a streamable object. This

only applies to strings and arrays by default. The second argument rule specifies the

starting point of the matching process. The remaining arguments are optional. If the

starting rule is a parametrized rule, the required arguments can be prepended to the

input stream by providing an array as third argument args. Finally an optional callback

function failure can be registered to handle errors.

var tree = BSOMetaJSParser.matchAll(source, ’topLevel’);
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The result of the matching process is an OMeta/JS language parse-tree, representing

our grammar definition. In order to receive valid JavaScript code we need to translate

this tree using the BSOMetaJSTranslator object and the method match. The required

arguments of match are exactly the same like the ones of matchAll, with the exception

that any JavaScript object may be provided as input8. In this case we are matching the

syntax tree resulting from the previous step.

var grammar = BSOMetaJSTranslator.match(tree, ’trans’);

After applying the above line, the variable grammar contains a textual representation of

JavaScript code. To bring it to life and in order to actually use our grammar object we

have to evaluate the JavaScript-string.

eval(grammar);

This introduces a new variable in the global scope named identical to the compiled

grammar. In this case the variable Numbers will contain the desired grammar object.

1.2.1 Usage of OMeta Grammar Objects

In the previous we learned how to parse, translate and evaluate our grammar. The

result is a new grammar-object introduced within the global scope. Compiling the above

grammar will result in a Numbers object which has a prototypal link to the OMeta object.

The usage of this grammar object is equivalent to the above usage of BSOMetaJSParser.

A matching process for instance could look like:

Numbers.matchAll(’1.534e-2’, ’decimal’)

The result of this expression is the numerical value 0.01534. We also might add a handler

to gather more information about possible failures. In this case we just have to add a

callback function as fourth argument. Currently the third one, awaiting arguments to

pass to the specified rule “decimal”, is not needed and hence set to undefined.

Numbers.matchAll(’1.5f’, ’decimal’, undefined, function(grammar, pos) {

...

})

The first argument provided to the callback function is the grammar object itself. The

second argument indicates the position at which the error occurred.

Generally speaking, the method matchAll is used to match input which is treated as a

stream, while in contrast the method match is used to recognize single objects.

1.2.2 Stateful Pattern Matching

By adding semantic actions OMeta allows not only to manipulate the results of expres-

sions (for instance in order to create the syntax tree), but also to trigger side effects

8For instance the OMeta grammar ometa Four { n = 4 } will successfully match the number four by
applying Four.match(4, ’n’)
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during the process of matching. This can be really useful, for instance if we want to

gather information such as the occurrence of strings in order to collect them in a string

table. An example of how this task can be achieved is illustrated in Figure 1.16.

ometa SomeParser {
...
string = ’"’ <(~’"’ char)+>:cs ’"’ !this.collect(cs):i -> { type: "String", id: i }
...

}
Parser.initialize = function() { this.strings = []; }
Parser.collect = function(string) {
var i = this.strings.indexOf(string);
if(i === -1)
return this.strings.push(string) - 1;

else
return i;

}

Figure 1.16: Using stateful pattern matching to create a string table

In this example SomeParser makes use of semantic actions like !this.collect to push

all found strings in a shared string table. Each string is only stored once - duplicates

are filtered. Each string is finally replaced with an AST node containing the id (the

position of the string inside of the collection), not the value itself. The callback function

initialize is registered in order to prepare the parser instance before the matching

can start.

1.3 Summary

OMeta/JS rendered itself to be an elegant solution for the different steps of compilation.

It allows to match not only streams of characters, but also arbitrary host objects. To

provide this functionality, the OMeta language shows some differences compared to

common parsing expression grammars. Additionally, it equips the developer with features

like left-recursion, semantic predicates, semantic actions, grammar inheritance and

foreign rule invocation. We have seen how parametrized rules can be combined with the

rule apply to create higher order rules. Nevertheless, there are some pitfalls like the

difference between host-language and OMeta context. Moreover, the subtle distinction

between the various string-literals is not quite easy and requires some attention.

Due to the fact that setting up OMeta requires the inclusion of many files, we have

concatenated them all into one single file. This allows to work with OMeta grammars

more easily. Yet, the various dependencies between the different files can be improved

futher.

In the next chapter we will see how this can take place and how OMeta/JS can be used

more conveniently.
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1.4 OMeta Base Grammar

ometa Base {

anything = !(this.bt.comsume())

pos = !(this.bt.pos()),

apply = :rule !(this._apply(rule)),

// derived rules
exactly :wanted = :got ?(wanted === got),

end = ~anything,

empty = !(true),

true = :obj ?(obj === true),

false = :obj ?(obj === false),

undefined = :obj ?(obj === undefined),

number = :obj ?(typeof obj === ’number’),

string = :obj ?(typeof obj === ’string’),

char = :obj ?(typeof obj === ’string’ && obj.length === 1),

range :from :to = char:x ?(from <= x && x <= to) -> x,

digit = range(’0’, ’9’),

lower = range(’a’, ’z’),

upper = range(’A’, ’Z’),

letter = lower | upper,

letterOrDigit = letter | digit

space = char:value ?(value.charCodeAt(0) <= 32),

spaces = space*,

token :t = spaces seq(t),

firstAndRest :first :rest = apply(first):f (apply(rest))*:r -> [f].concat(r),

listOf :rule :delim = apply(rule):f
( token(delim) apply(rule) )*:r -> [f].concat(r)

| empty -> [],

fromTo :from :to = <seq(from) ( ~seq(to) char )* seq(to)>,

notLast :rule = apply(rule):r &(apply(rule)) -> r

}

Figure 1.17: Grammar implementing methods from the OMeta-base

Please note that the rule range is not included in OMeta by default but has been added

to allow a more convenient implementation.

16



1.5. OBJECT PATTERN MATCHING IN OMETA/JS

1.5 Object Pattern Matching in OMeta/JS

As seen in section 1.1 (Pattern Matching) it can be difficult to match an object in

OMeta/JS, though it is possible. For example some minor workarounds are necessary in

order to match person-objects like:

var person = {

name: "Alice",

age: 32

}

The name is just a combination of letters while the age should be any positive numerical

value. To allow matching these objects a grammar might be written as in figure 1.18.

Despite the fact that this implementation is simplified and therefore does not work9

actually, it still looks more difficult than it is.

ometa Person {
identifier = <letter+>,
number = ^number:n ?(n > 0) -> n,
person = anything:p identifier(p.name) number(p.age) -> p

}

Figure 1.18: Grammar to match person-objects

The call to identifier with one argument results in p.name to be pushed into the input

stream before the rule is applied. Since arguments are handled the exactly same way as

normal input (Actually they just are normal input) the rules number and identifier do

not need to expect special parameters. Consequently, the passed arguments are simply

used as upcoming input.

For special object-types like lists, characters, numbers and strings there are special

notations provided by OMeta/JS. On the other hand, JavaScript objects consisting of

properties cannot be matched that easy.

In addition there are three semantically equal ways to express a semantic action:

1. The arrow notation-> ...

2. The side-effect notation !(...)

3. The curly-brace notation {...}

While this might cause some problems with existing code it might be reasonable to drop

the third alternative in order to favor generic object matching expressions. JavaScript

objects mostly are created by using the object-literal syntax as seen in the introductory

example. This notation is close to the current curly-brace notation for semantic actions.

After removing support for the latter, a pattern matching for objects and their properties

could be incorporated as seen in figure 1.20.

In this example the need for all semantic predicates is replaced by the alternative curly

brace notation. Because JavaScript programmers are already familiar with this syntax

9 The reason for this is the fact that p.name is not converted into an input-stream, so the characters cannot
be matched individually
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ometa Person {
identifier = <letter+>,
number = ^number:n ?(n > 0) -> n,
person = { name: identifier, age: number }

}

Figure 1.19: Improved grammar to match person-objects, using generic object-pattern matching

the idea to use object-literals for pattern matching of objects seems obvious. Please

note that identifier and number are both applied in context of the OMeta-language,

not JavaScript. An OMeta/JS grammar to parse those expressions is trivial and can be

seen in figure 1.20.

objectMatch = "{" listOf(#propertyMatch, ’,’) "}"
propertyMatch = identifier:n ":" ometaExpr:x

Figure 1.20: Grammar to parse object-pattern matching expressions

Advanced Usage

To reveal the power of the novel object-pattern notation we might take a look at a slightly

more complex example grammar (fig. Enhanced grammar to match person-objects)

which matches only persons older then 21. Those persons optionally may contain a

second person as property partner.

ometa Person {
identifier = <letter+>,
older number:n = number:i ?(i > n) -> i,
person = { name: identifier, age: older(21), partner: person? }

}

Figure 1.21: Enhanced grammar to match person-objects

The rule person in the above example combines the usage of rules, parametrized rules

and optional rules within a single object-pattern matching expression. In addition, it

invokes itself recursively inside of property-match partner. This recursive match has to

be optional - otherwise only endless partner-chains would be a valid match.

In personal communication with Alessandro Warth, the creator of OMeta, he fully agreed

with the idea of adding support for object pattern matching but was concerned about

breaking backwards compatibility.
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