
Least fixed point (Data) 
(* ! *) ! *

! f = f (! f) = f (… (f 0)) = Free f 0

Instances of ! f are “f-data-structures” or short “f-structures”. 

Free Monads 
(* ! *) ! * ! *

Free f a = a + f (Free f a)
            variable      term

"
A finite f-structure, that can contain as. Is a functor and a monad. 
Monadic-bind corresponds to substitution: Substitutes as by terms 
that can contain bs. 

Destruction Morphisms 
catamorphism 

cata ∷ ∀ a. (f a ! a) ! ! f ! a
                  f-algebra

"
Also known as “fold”. Deconstructs a f-structure level-by-level and 
applies the algebra [13, 5, 14, 6]. 

paramorphism 
para ∷ ∀ a. (f (! f , a) ! a) ! ! f ! a

A.k.a. “the Tupling-Trick”. Like cata, but allows access to the full 
subtree during teardown. Is a special case of zygo, with the helper 
being the initial-algebra [16]. 

zygomorphism 
zygo ∷ ∀ a b. (f (a , b) ! a) !

              (f b ! b)       ! ! f ! a

Allows depending on a helper algebra for deconstructing a f-struc-
ture. A generalisation of para. 

histomorphism 
histo ∷ ∀ a. (f (Cofree f a) ! a) ! ! f ! a

Deconstructs the f-structure with the help of all previous computa-
tion for the substructures (the trace). Difference to para: The sub-
computation is already available and needs not to be recomputed. 

prepromorphism 
prepro ∷ ∀ a. (f a ! a) ! (f 
Å f) ! ! f ! a

Applies the natural transformation at every level, before destructing 
with the algebra. Can be seen as a one-level rewrite. This extension 
can be combined with other destruction morphisms [4].

Greatest fixed point (Codata) 
(* ! *) ! *

#f = f (#f) = f (f (…)) = Cofree f 1

Instances of #f are “f-codata-structures” or short “f-structures”. 

Cofree Comonads 
(* ! *) ! * ! *

Cofree f a = a , f (Cofree f a)
              annotation    trace

"
A possibly infinite f-structure, full of as. Is a functor and a comonad. 
Comonadic-extend corresponds to computing a new f-structure full 
of bs. At every level the a and the full trace are available for com-
puting the b. 

Construction Morphisms 
anamorphism 

ana ∷ ∀ a. (a ! f a) ! a ! #f
                f-coalgebra

"
Also known as “unfold”. Constructs a f-structure level-by-level, 
starting with a seed and repeatedly applying the coalgebra [13, 5]. 

apomorphism 
apo ∷ ∀ a.  (a ! f (a + #f)) ! a ! #f

A.k.a. “the Co-Tupling-Trick”™. Like ana, but also allows to return 
an entire substructure instead of one level only. Is a special case of 
g-apo, with the helper being the final-coalgebra [17, 16]. 

g-apomorphism 
gapo ∷ ∀ a b. (a ! f (a + b)) !

              (b ! f b)       ! a ! #f

Allows depending on a helper coalgebra for constructing a f-struc-
ture. A generalisation of apo. 

futumorphism 
futu ∷ ∀ a. (a ! f (Free f a)) ! a ! #f

Constructs a f-structure stepwise, but the coalgebra can return 
multiple layers of a-valued substructures at once. Difference to apo: 
the subtrees can again contain as [16]. 

postpromorphism 
postpro ∷ ∀ a. (a ! f a) ! (f 
Å f) ! a ! #f

Applies the natural transformation at every level, after construction 
with the coalgebra. Can be seen as a one-level rewrite. This exten-
sion can be combined with other construction morphisms.

Combined Morphisms 
ana then cata = hylomorphism 

hylo ∷ ∀ a b. (a ! f a) ! (f b ! b) ! a ! b

Omits creating the intermediate structure and immediately applies 
the algebra to the results of the coalgebra† [13, 2, 5, 14]. 

ana then histo = dynamorphism 
dyna ∷ ∀ a b. (a ! f a) !

              (f (Cofree f b) ! b) ! a ! b

Constructs a structure and immediately destructs it while keeping 
intermediate results  . Can be used to implement dynamic-pro-
gramming algorithms [9, 10]. 

futu then histo = chronomorphism 
chrono ∷ ∀ a b. (a ! (Free f a)) !

                (f (Cofree f b) ! b) ! a ! b

Can at the same time “look back” at previous results and “jump into 
the future” by returning seeds that are multiple levels deep   [11]. 

cata then conv then ana = metamorphism 
meta ∷ ∀ a b. (f a ! a) ! (a ! b) ! (b ! g b) !

              ! f ! #g

Constructs a g-structure from a f-structure while changing the inter-
nal representation in-between [7]. 

Other Morphisms 
"
Most of the above morphisms can be modified to accept general-
ized algebras (with w being a comonad) 

GAlgebra f w a = f (w a) ! a

or generalised coalgebras (with m being a monad), respectively: 

GCoalgebra f m a = a ! f (m a)

Also a multitude of other morphisms exist [12, 3, 1] and the combi-
nation of morphisms and distributive laws 

Distr f g = ∀ a. f (g a) ! g (f a)

has been studied [8, 15]. 

   Can also be enhanced by a representation change (natural transformation f 
Å g), before 
deconstructing with a corresponding g-algebra
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