
Least fixed point (Data)
(* ! *) ! *

! f = f (! f) = f (… (f 0)) = Free f 0

Instances of ! f are “f-data-structures” or short “f-structures”.

Free Monads
(* ! *) ! * ! *

Free f a = a + f (Free f a)
 variable term

"
A finite f-structure, that can contain as. Is a functor and a monad.
Monadic-bind corresponds to substitution: Substitutes as by terms
that can contain bs.

Destruction Morphisms
catamorphism

cata ∷ ∀ a. (f a ! a) ! ! f ! a
 f-algebra

"
Also known as “fold”. Deconstructs a f-structure level-by-level and
applies the algebra [13, 5, 14, 6].

paramorphism
para ∷ ∀ a. (f (! f , a) ! a) ! ! f ! a

A.k.a. “the Tupling-Trick”. Like cata, but allows access to the full
subtree during teardown. Is a special case of zygo, with the helper
being the initial-algebra [16].

zygomorphism
zygo ∷ ∀ a b. (f (a , b) ! a) !

 (f b ! b) ! ! f ! a

Allows depending on a helper algebra for deconstructing a f-struc-
ture. A generalisation of para.

histomorphism
histo ∷ ∀ a. (f (Cofree f a) ! a) ! ! f ! a

Deconstructs the f-structure with the help of all previous computa-
tion for the substructures (the trace). Difference to para: The sub-
computation is already available and needs not to be recomputed.

prepromorphism
prepro ∷ ∀ a. (f a ! a) ! (f Å f) ! ! f ! a

Applies the natural transformation at every level, before destructing
with the algebra. Can be seen as a one-level rewrite. This extension
can be combined with other destruction morphisms [4].

Greatest fixed point (Codata)
(* ! *) ! *

#f = f (#f) = f (f (…)) = Cofree f 1

Instances of #f are “f-codata-structures” or short “f-structures”.

Cofree Comonads
(* ! *) ! * ! *

Cofree f a = a , f (Cofree f a)
 annotation trace

"
A possibly infinite f-structure, full of as. Is a functor and a comonad.
Comonadic-extend corresponds to computing a new f-structure full
of bs. At every level the a and the full trace are available for com-
puting the b.

Construction Morphisms
anamorphism

ana ∷ ∀ a. (a ! f a) ! a ! #f
 f-coalgebra

"
Also known as “unfold”. Constructs a f-structure level-by-level,
starting with a seed and repeatedly applying the coalgebra [13, 5].

apomorphism
apo ∷ ∀ a. (a ! f (a + #f)) ! a ! #f

A.k.a. “the Co-Tupling-Trick”™. Like ana, but also allows to return
an entire substructure instead of one level only. Is a special case of
g-apo, with the helper being the final-coalgebra [17, 16].

g-apomorphism
gapo ∷ ∀ a b. (a ! f (a + b)) !

 (b ! f b) ! a ! #f

Allows depending on a helper coalgebra for constructing a f-struc-
ture. A generalisation of apo.

futumorphism
futu ∷ ∀ a. (a ! f (Free f a)) ! a ! #f

Constructs a f-structure stepwise, but the coalgebra can return
multiple layers of a-valued substructures at once. Difference to apo:
the subtrees can again contain as [16].

postpromorphism
postpro ∷ ∀ a. (a ! f a) ! (f Å f) ! a ! #f

Applies the natural transformation at every level, after construction
with the coalgebra. Can be seen as a one-level rewrite. This exten-
sion can be combined with other construction morphisms.

Combined Morphisms
ana then cata = hylomorphism

hylo ∷ ∀ a b. (a ! f a) ! (f b ! b) ! a ! b

Omits creating the intermediate structure and immediately applies
the algebra to the results of the coalgebra† [13, 2, 5, 14].

ana then histo = dynamorphism
dyna ∷ ∀ a b. (a ! f a) !

 (f (Cofree f b) ! b) ! a ! b

Constructs a structure and immediately destructs it while keeping
intermediate results . Can be used to implement dynamic-pro-
gramming algorithms [9, 10].

futu then histo = chronomorphism
chrono ∷ ∀ a b. (a ! (Free f a)) !

 (f (Cofree f b) ! b) ! a ! b

Can at the same time “look back” at previous results and “jump into
the future” by returning seeds that are multiple levels deep [11].

cata then conv then ana = metamorphism
meta ∷ ∀ a b. (f a ! a) ! (a ! b) ! (b ! g b) !

 ! f ! #g

Constructs a g-structure from a f-structure while changing the inter-
nal representation in-between [7].

Other Morphisms
"
Most of the above morphisms can be modified to accept general-
ized algebras (with w being a comonad)

GAlgebra f w a = f (w a) ! a

or generalised coalgebras (with m being a monad), respectively:

GCoalgebra f m a = a ! f (m a)

Also a multitude of other morphisms exist [12, 3, 1] and the combi-
nation of morphisms and distributive laws

Distr f g = ∀ a. f (g a) ! g (f a)

has been studied [8, 15].

 Can also be enhanced by a representation change (natural transformation f Å g), before
deconstructing with a corresponding g-algebra

[1]! Ad‡mek, Ji"’, Stefan Milius, and Ji"’ Velebil. "Elgot algebras." Electronic Notes in!
" Theoretical Computer Science, 2006.#

[2] ! Augusteijn, Lex. "Sorting morphisms." Advanced Functional Programming. !
" Springer Berlin Heidelberg, 1998.#

[3]! Erwig, Martin. Random access to abstract data types. Springer Berlin !
" Heidelberg, 2000.#

[4]! Fokkinga, Maarten M. "Law and order in algorithmics.Ó PhD Thesis, 1992.#

[5]! Gibbons, Jeremy. "Origami programming.Ó, 2003.#

[6]! Gibbons, Jeremy. "Design patterns as higher-order datatype-generic programs.Ó$
! Proceedings of the Workshop on Generic programming . ACM, 2006.#

[7]! Gibbons, Jeremy. "Metamorphisms: Streaming representation-changers." $
! Science of Computer Programming , 2007.#

[8]! Hinze, Ralf, et al. "Sorting with bialgebras and distributive laws." Proceedings of the

" Workshop on Generic programming. ACM, 2012.#

[9]! Hinze, Ralf, and Nicolas Wu. "Histo-and dynamorphisms revisited." Proceedings of !
" the Workshop on Generic programming. ACM, 2013.#

[10]!Kabanov, Jevgeni, and Varmo Vene. "Recursion schemes for dynamic program-$
! ming.Ó Mathematics of Program Construction . Springer Berlin Heidelberg, 2006.#

[11]!Kmett, Edward. ÒTime for Chronomorphisms.Ó, 2008. $
! http://comonad.com/reader/2008/time-for-chronomorphisms/ #

[12]!Kmett, Edward. ÒRecursion Schemes: A Field Guide (Redux).Ó, 2009. $
! http://comonad.com/reader/2009/recursion-schemes/ #

[13]!Meijer, Erik, Maarten Fokkinga, and Ross Paterson. "Functional programming with $
! bananas, lenses, envelopes and barbed wire." Functional Programming Languages !
" and Computer Architecture . Springer Berlin Heidelberg, 1991.#

[14]!Oliveira, Bruno, and Jeremy Gibbons. "Scala for generic programmers." $
! Proceedings of the Workshop on Generic programming . ACM, 2008.#

[15]!Turi, Daniele, and Gordon Plotkin. "Towards a mathematical operational $
! semantics." Logic in Computer Science. IEEE, 1997.#

[16]!Uustalu, Tarmo, and Varmo Vene. "Primitive (co) recursion and course-of-value $
! (co) iteration, categorically." Informatica, 1999.#

[17]!Vene, Varmo, and Tarmo Uustalu. "Functional programming with apomorphisms $
! (corecursion)." Proceedings of the Estonian Academy of Sciences: Physics, Mathe-!
" matics. Vol. 47. No. 3. 1998.

http://comonad.com/reader/2008/time-for-chronomorphisms/
http://comonad.com/reader/2009/recursion-schemes/
http://comonad.com/reader/2008/time-for-chronomorphisms/
http://comonad.com/reader/2009/recursion-schemes/

